Il Apple Ile Technical Reference
Manual

INCLUDES ROM LISTINGS DOWNLOADED FROM WWW.APPLE2 ONLINE.COM

> %24.95 FPT
USA

Apple® Technical Library Titles
for the Apple e and Ilc

The Official Publications from
Apple Computer, Inc.

Apple Ile and Apple IIc programmers, developers,
and enthusiasts will find a wealth of information

in the Apple Technical Library, an ongoing series of
comprehensive reference manuals. The first volumes
in the Library contained detailed information about
the Apple Ile and Apple Ilc computers. They describe
the hardware, firmware, the ProDOS 8 operating sys-
tem, and the Applesoft BASIC programming lan-
guage found in Apple Ile and Ilc computers.

These books, written and produced by Apple
Computer, Inc., provide definitive references for
those interested in getting the most out of their
Apple Ile or Ilc.

Apple Technical Library Titles for the Apple Ile
and Ilc include:

- Apple le Technical Reference

Apple Ilc Technical Reference

Applesoft Tutorial

Applesoft BASIC Programmer’s Reference
Manual

ProDOS 8 Technical Reference

BASIC Programming with ProDOS

Apple Numerics Manual

ImageWriter II Technical Reference
Manual

Apple. Il Apple Ile
Technical
Reference

A
vv

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrid Bogotd Santiago San Juan

& APPLE COMPUTER, INC.

Copyright © 1986 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be
reproduced, stored in a
retrieval system, or
transmitted, in any form or by
any means, electronic,
mechanical, photocopying,
recording, or otherwise,
without prior written permission
of Apple Computer, Inc.
Printed in the United States of
America.

Apple, the Apple logo,

Disk II, LaserWriter, and
ProDOS are registered
trademarks of Apple Computer,
Inc.

ProFile and ‘Macintosh are
trademarks of Apple Computer,
Inc.

CP/M is a registered trademark
of Digital Research, Inc.

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

SOFTCARD and Microsoft are
registered trademarks of
Microsoft Corporation.

Z80 is a registered trademark of
Zilog, Inc.

Z-Engine is a trademark of
Advanced Logic Systems, Inc.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17750-1
ABCDEFGHIJ-DO-8987
First printing, January 1987

‘WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD *AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any
modification, extension, or addition
to this warranty.

Some states do no allow the exclu-
sion or limitation of implied warran-
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights’
which vary from state to state.

Downloaded from www.Apple20nline.com

Preface

Chapter 1

Contents

Figures and tables xi

About This Manual xvii

Contents of this manual xvii
The Apple Ile family xix
Identifying your Apple Ile xix
The original Apple Ile xx
The enhanced Apple lle xx
Startup drives xx
Video firmware xxi
Video enhancements xxi
Applesoft 80-column support xxi
Applesoft lowercase support xxii
Apple II Pascal xxii
System Monitor enhancements xxii
Interrupt handling xxii
The extended keyboard Apple Ile xxiii
RAM upgrade xxiii
Single-wire Shift-key mod xxiii
Symbols used in this manual xxiv

Introduction 1

Removing the cover 2

The keyboard 3

The speaker 4

The power supply 4

The circuit board 4

Connectors on the circuit board 7
Connectors on the back panel 8

Contents

Chapter2 Bullt-in I/O Devices 9

The keyboard 10
Reading the keyboard 12
The video display generator 16
Text modes 19
Text character sets 19
40-column versus 80-column text 21
Graphics modes 21
Low-resolution graphics 21
High-resolution graphics 23
Double high-resolution graphics: 25
Video display pages 27
Display mode switching 28
Addressing display pages directly 31
Secondary inputs and outputs 38
The speaker 38
Cassette input and output 39
The hand control connector signals 40
Annunciator outputs 40
Strobe output 41
Switch inputs 41
Analog inputs 42
Summary of secondary I/O locations 43

Chapter3 Bulit-in I/O Firmware 45

Using the I/O subroutines 48
Apple II compatibility 48
The 80-column firmware 49
The old monitor 51
The standard I/O links 51
Standard output features 52
COUT output subroutine 52
Control characters with COUT1 and BASICOUT 53
The stop-list feature 55
The text window 56
Inverse and flashing text 57
Standard input features 58
RDKEY input subroutine 59
KEYIN input subroutine 59
Escape codes with KEYIN and BASICIN 60
Cursor motion in escape mode 60
GETLN input subroutine 62

Chapter 4

Chapter 5

Editing with GETLN 63
Cancel line 63
Backspace 63
Retype 64

Monitor firmware support 64
I/O firmware support 68

Memory Organization 73

Main memory map 74
RAM memory allocation 76
Reserved memory pages 77
Page zero 77
The 65C02 stack 78
The input buffer 78
Link-address storage 78
The display buffers 78
Bank-switched memory 82
Setting bank switches 83
Reading bank switches 86
Auxiliary memory and firmware 86
Memory mode switching 88
Auxiliary-memory subroutines 91
Moving data to auxiliary memory 92
Transferring control to auxiliary memory 93
The reset routine 94
The cold-start procedure 95
The warm-start procedure 95
Forced cold start 96
The reset vector 96
Automatic self-test 98

Using the Monitor 99

Invoking the Monitor 100

Syntax of Monitor commands 101

Monitor memory commands 102
Examining memory contents 102
Memory dump 102

Changing memory contents 105
Changing one byte 105
Changing consecutive locations 106
ASCII input mode 106
Moving data in memory 107
Comparing data in memory 109
Searching for bytes in memory 110

Examining and changing registers 110

Contents

Monitor cassette tape commands 111
Saving data on tape 111
Reading data from tape 113
Miscellaneous Monitor commands 114
Inverse and normal display 114
Back to BASIC 115
Redirecting input and output 115
Hexadecimal arithmetic 116
Special tricks with the Monitor 116
Multiple commands 116
Filling memory 117
Repeating commands 118
Creating your own commands 119
Machine-language programs 120
Running a program 120
Disassembled programs 121
The Mini-Assembler 123
Starting the Mini-Assembler 123
Restrictions 123
Using the Mini-Assembler 124
Mini-Assembler instruction formats 126
Summary of Monitor commands 127
Examining memory 127
Changing the contents of memory 127
Moving and comparing 127
The Examine command 127
The Search command 128
Cassette tape commands 128
Miscellaneous Monitor commands 128
Running and listing programs 129
The Mini-Assembler 129

Chapter § Programming for Peripheral Cards 131

Peripheral-card memory spaces 132
Peripheral-card 1/O space 133
Peripheral-card ROM space 133
Expansion ROM space 133
Peripheral-card RAM space 136

1/0 programming suggestions 136
Finding the slot number with ROM switched in 137
1/O addressing 138
RAM addressing 139
Changing the standard 1/0 links 140

Other uses of I/O memory space 141
Switching I/O memory 142

Developing cards for slot 3 144

vi Contents

Pascal 1.1 firmware protocol 145
Device identification 145
I/O routine entry points 145
Interrupts on the enhanced Apple Ile 147
What is an interrupt? 147
Interrupts on Apple Ile series computers 148
Rules of the interrupt handler 149
Interrupt handling on the 65C02 and 6502 150
The interrupt vector at $FFFE 151
The built-in interrupt handler 151
Saving the Apple Ile’s memory configuration 152
Managing main and auxiliary stacks 153
The user’s interrupt handler at $3FE 154
Handling break instructions 155
Interrupt differences: Apple Ile versus Apple Ilc 156

Chapter7 Hardware Implementation 157

Environmental specifications 158
The power supply 159
The power connector 160
The 65C02 microprocessor 161
65C02 timing 162
The custom integrated circuits 164
The Memory Management Unit 164
The Input/Output Unit 165
The PAL device 167
Memory addressing 168
ROM addressing 168
RAM addressing 169
Dynamic-RAM refreshment 170
Dynamic-RAM timing 171
The video display 173
The video counters 173
Display memory addressing 174
Display address mapping 175
Video display modes 178
Text displays 178
Low-resolution display 181
High-resolution display 183
Double high-resolution display 184
Video output signals 185
Built-in I/O circuits 186
The keyboard 187
Connecting a keypad 188
Cassette /O 188
The speaker 189
Game I/O signals 189 Contents

viii

Appendix A

Appendix B

Appendix C

Appendix D

Contents

Expanding the Apple lle 191

The expansion slots 191
The peripheral address bus 192
The peripheral data bus 192
Loading and driving rules 193
Interrupt and DMA daisy chains 193

The auxiliary slot 197
80-column display signals 197

The 65C02 Microprocessor 209

Differences between 6502 and 65C02 209
Different cycle times 210
Different instruction results 210
Data sheet 210

Directory of Built-in Subroutines 220

Apple Il Family Differences 227

Keyboard 227

Apple keys 228

Character sets 228

80-column display 228

Escape codes and control characters 229
Built-in Language Card 229
Auxiliary memory 229
Auxiliary slot 229

Back panel and connectors 230
Soft switches 230

Built-in self-test 230

Forced reset 230

Interrupt handling 231

Vertical sync for animators 231
Signature byte 231

Hardware implementation 231

Operating Systems and Languages 233

Operating systems 233
ProDOS 233
DOS 3.3 233
Pascal operating system 234
CP/M 234

Appendix E

Appendix F

Appendix G

Appendix H

Languages 234
Assembly language 234
Applesoft BASIC 235
Integer BASIC 235
Pascal language 235
Fortran 235

Conversion Tables 236

Bits and bytes 236 ‘

Hexadecimal and decimal 238
Hexadecimal and negative decimal 239
Graphics bits and pieces 241

Eight-bit code conversions 243

Frequently Used Tables 252

Using an 80-Column Text Card 267

Starting up with Pascal or CP/M 267
Starting up with ProDOS or DOS 3.3 268
Using the GET command 269
When to switch modes versus when to deactivate 269
Display features with the text card 270
INVERSE, FLASH, NORMAL, HOME 270
Tabbing with the original Apple Ile 271
Comma tabbing with the original Apple Ile 271
HTAB and POKE 1403 271
Using control characters with the card 272
Control characters and their functions 272
How to use control-character codes in programs 275
A word of caution to Pascal programmers 275

Programming With the Super Serial Card 276

Locating the card 276
Operating modes 277
Operating commands 277
The command character 278
Baud rate, nB 279
Data format, nD 279
Parity, nP 279
Set time delay, nC, nL, and nF 280
Echo characters to the screen, E_E/D 280

Contents

Appendix |

Appendix J

Contents

Automatic carriage return, C 281
Automatic line feed, L_E/D 281
Mask line feed in, M_E/D 281
Reset card, R 281

Specify screen slot, § 282

Translate lowercase characters, nT 282

Suppress control characters, Z 283
Find keyboard, F_E/D 283
XOFF recognition, X_E/D 283
Tab in BASIC, T_E/D 284

Terminal mode 284
Entering terminal mode, T 284
Transmitting a break, B 284
Special characters, S_E/D 285
Quitting terminal mode, Q 285

SSC error codes 285

The ACIA 286

SSC firmware memory use 287
Zero-page locations 288
Peripheral-card 1/O space 288
Scratchpad RAM locations 290

intemational Versions 292

The English keyboard 297
The French keyboard 298
The Canadian keyboard 299
The German keyboard 300
The Italian keyboard 301
The Western Spanish keyboard 302
The Swedish keyboard 303
Certification 304
Product safety 304
Grounding notice 304
Power supply specifications 305

Monitor Firmware Lsting 306

Glossary 349
Bibliography 373
Index 375

Tell Apple Card

Figures and tables

Chapter 1 Introduction 1

Figure 1-1 Removing the cover 1

Figure 1-2 Apple Ile with the cover off 1

Figure 1-3 Original and enhanced Ile keyboard 3
Figure 1-4 Extended keyboard Ile keyboard 3
Figure 1-5 Circuit board 5

Figure 1-6 Expansion slots 7

Figure 1-7 Auxiliary slot 7

Figure 1-8 Back panel connectors 8

Chapter2 Built-in 1/O Devices 9

Figure 2-1 Original and enhanced Ile keyboard 11
Figure 2-2 Extended keyboard Ile keyboard 11

Figure 2-3 40-column text display 22

Figure 2-4 80-column text display 22

Figure 2-5 High-resolution display bits 23

Figure 2-6 Map of 40-column text display 33

Figure 2-7 Map of 80-column text display 34

Figure 2-8 Map of low-resolution graphics display 35
Figure 2-9 Map of high-resolution graphics display 36
Figure 2-10 Map of double high-resolution graphics display 37
Table 2-1 Keyboard memory locations 12

Table 2-2 Keys and ASCII codes 14

Table 2-3 Video display specifications 17

Table 2-4 Display character sets 20

Table 2-5 Low-resolution graphics colors 23

Table 2-6 High-resolution graphics colors 25

Table 2-7 Double high-resolution graphics colors 26
Table 2-8 Video display page locations 28

Table 2-9 Display soft switches 29

Table 2-10 Annunciator memory locations 41

Table 2-11 Secondary I/O memory location 43

Chapter3 Built-in 1/O Firmware 45

Table 3-1 Monitor firmware routines 46
Table 3-2 Apple II mode 48 g
Table 3-3a Control characters, 80-column firmware off 53

Table 3-3b Control characters, 80-column firmware on 53 i
Xi

Table 3-4 Text window memory locations 57
Table 3-5 Text format control values 57
Table 3-6 Escape codes 60

Table 3-7 Prompt characters 62

Table 3-8 Video firmware routines 64

Table 3-9 Slot 3 firmware protocol table 69
Table 3-10 Pascal video control functions 70

Chapter4 Memory Organization 73

Figure 4-1 System memory map 75

Figure 4-2 RAM allocation map 76

Figure 4-3 Bank-switched memory map 82

Figure 4-4 Memory map with auxiliary memory 87
Table 4-1 Monitor zero-page use 79

Table 4-2 Applesoft zero-page use 80

Table 4-3 Integer BASIC zero-page use 80

Table 4-4 DOS 3.3 zero-page use 81

Table 4-5 ProDOS MLI and disk-driver zero-page use 81
Table 4-6 Bank select switches 84

Table 4-7 Auxiliary-memory select switches 90
Table 4-8 48K RAM transfer routines 91

Table 4-9 Parameters for AUXMOVE routine 92
Table 4-10 Parameters for XFER routine 93

Table 4-11 Page 3 vectors 97

Chapter5 Using the Monitor 99
Table 5-1 Mini-Assembler address formats 126

Chapter 6 Programming for Peripheral Cards 131

Figure 6-1 Expansion ROM enable circuit 134

Figure 6-2 ROM disable address decoding 135

Figure 6-3 1/0 memory map 142

Table 6-1 Peripheral-card I/O memory locations
enabled by DEVICE SELECT’ 133

Table 6-2 Peripheral-card ROM memory locations
enabled by 1/0 SELECT’ 133

Table 6-3 Peripheral-card RAM memory locations 136

Table 6-4 Peripheral-card 1/O base addresses 138

Table 6-5 I/O memory switches 143

Table 6-6 Peripheral-card device-class assignments 145

Table 6-7 1/O routine offsets and registers
under Pascal 1.1 protocol 146

Table 6-8 Interrupt-handling sequence 152

Table 6-9 BRK handler information 155

Table 6-10 Memory configuration information 156

xii Figures and tables

Chapter7 Hardware Implementation 157

Figure 7-1 65C02 timing signals 163

Figure 7-2 MMU pinouts 165

Figure 7-3 IOU pinouts 166

Figure 7-4 PAL pinouts 167

Figure 7-5 2364 ROM pinouts 168

Figure 7-6 23128 ROM pinouts 169

Figure 7-7 2316 ROM pinouts 169

Figure 7-8 2333 ROM pinouts 170

Figure 7-9 64Kx1 RAM pinouts 170

Figure 7-10 64Kx4 RAM pinouts 170

Figure 7-11 RAM timing signals 172

Figure 7-12 40-column text display memory 177

Figure 7-13a 7 MHz video timing signals 180

Figure 7-13b 14 MHz video timing signals 181

Figure 7-14 Peripheral-signal timing 194

Figure 7-15 Original and enhanced Ile schematic diagram 201
Figure 7-16 Extended keyboard Ile schematic diagram 205

Table 7-1 Summary of environmental specifications 158
Table 7-2 Power supply specifications 159
Table 7-3 Power connector signal specifications 160

Table 7-4 65C02 microprocessor specifications 161
Table 7-5 65C02 timing signal descriptions 163
Table 7-6 MMU signal descriptions 165

Table 7-7 IOU signal descriptions 166

Table 7-8 PAL signal descriptions 167

Table 7-9 RAM address multiplexing 171

Table 7-10 RAM timing signal descriptions 172
Table 7-11 Display address transformation 177
Table 7-12 Display memory addressing 177

Table 7-13 Memory address bits for display modes 178
Table 7-14 Character-generator control signals 181
Table 7-15 Internal video connector signals 186
Table 7-16 Keyboard connector signals 187

Table 7-17 Keypad connector signals 188

Table 7-18 Speaker connector signals 189

Table 7-19 Game /O connector signals 190

Table 7-20 Expansion slot signals 194

Table 7-21 Auxiliary slot signals 198

Figures and tables xiit

Appendix A The 65C02 Microprocessor 209
Table A-1 Cyde time differences 210

Appendix E Conversion Tables 236

Figure E-1 Bits, nibbles, and bytes 237
Figure E-2 Bit ordering in graphic displays 241
Table E-1 What a bit can represent 236
Table E-2 Values represented by a nibble 237
Table E-3 Hexadecimal/decimal conversion 238
Table E-4 Hexadecimal to negative decimal conversion 240
Table E-5 Hexadecimal values for high-resolution
dot patterns 241
Table E-6 Control characters, high bit off 244
Table E-7 Special characters, high bit off 245
Table E-8 Uppercase characters, high bit off 246
Table E-9 Lowercase characters, high bit off 247
Table E-10 Control characters, high bit on 248
Table E-11 Special characters, high bit on 249
Table E-12 Uppercase characters, high bit on 250
Table E-13 Lowercase characters, high bit on 251

Appendix F Frequently Used Tables 252

Table F-1 Keys and ASCII codes 252
Table F-2 Keyboard memory locations 254
Table F-3 Video display specifications 254
Table F-4 Double high-resolution graphics colors 255
Table F-5 Video display page locations 255
Table F-6 Display soft switches 256
Table F-7 Monitor firmware routines 257
Table F-8a Control characters, 80-column firmware off 259
Table F-8b Control characters, 80-column firmware on . 260
Table F-9 Text format control values 261
Table F-10 Escape codes 261
Table F-11 Pascal video control functions 263
Table F-12 Bank select switches 264
Table F-13 Auxiliary-memory select switches 265
Table F-14 48K RAM transfer routines 265
Table F-15 /O memory switches 266
Table F-16 1/O routine offsets and registers
under Pascal 1.1 protocol 266

Appendix G Using an 80-Column Text Card 267
Table G-1 Control characters, 80-column firmware on 273

xiv Figures and tables

Appendix H Programming With the Super Serial Card 276

Table H-1 Baud rate selections 279

Table H-2 Data format selections 279

Table H-3 Parity selections 279

Table H-4 Time delay selections 280

Table H-5 Lowercase character display options 282
Table H-6 STSBY'TE bit definitions 285

Table H-7 Error codes and bits 286

Table H-8 Memory use map 287

Table H-9 Zero-page locations used by the SSC 288
Table H-10 Address register bits interpretation 288
Table H-11 Scratchpad RAM locations used by the SSC 290

Appendix | International Versions 292

Figure I-1 International Ile schematic diagram 293
Figure I-2 English keyboard 297

Figure 1-3 French keyboard 298

Figure I-4 Canadian keyboard 299

Figure I-5 German keyboard 300

Figure 1-6 Italian keyboard 301

Figure I-7 Western Spanish keyboard 302

Figure I-8 Swedish keyboard 303

Table I-1 English keyboard ASCII codes 297

Table I-2 French keyboard ASCII codes 298

Table 1-3 Canadian keyboard ASCII codes 299

Table I-4 German keyboard ASCII codes 300

Table I-5 Italian keyboard ASCII codes 301

Table 1-6 Western Spanish keyboard ASCII codes 302
Table I-7 Swedish keyboard ASCII codes 303

Table 1I-8 International power supply specifications 305

Figures and tables XV

Preface

About This Manual

This is the reference manual for the Apple® Ile personal computer.
It contains detailed descriptions of all of the hardware and firmware
that make up the Apple Ile and provides the technical information
that peripheral-card designers and programmers need.

This manual contains a lot of information about the way the

Apple Ile works, but it doesn'’t tell you how to use the Apple Ile. For
this, you should read the other Apple Ile manuals, especially the
following:

O Apple Ile Owner’s Guide
O Applesoft Tutorial
This manual is designed to answer the question “What'’s inside the

box?” It describes the internal operation of the Apple Ile as
completely as possible in a single volume.

Contents of this manual

The material in this manual is presented roughly in order of
increasing intimacy with the hardware; the farther you go in the
manual, the more technical the material becomes. The main
subject areas are

introduction: preface and Chapter 1

use of built-in features: Chapters 2 and 3

how the memory is organized: Chapter 4
information for programmers: Chapters 5 and 6
hardware implementation: Chapter 7

O o0 ocaoo o

additional information: appendixes, glossary, and bibliography

xVii

xvlil

Chapter 1 identifies the main parts of the Apple Ile and tells where
in the manual each part is described.

Chapters 2 and 3 describe the built-in input and output features of
the Apple Ile. This part of the manual includes information you
need for low-level programming on the Apple Ile. Chapter 2
describes the built-in I/O features, and Chapter 3 tells you how to
use the firmware that supports them.

Chapter 4 describes the way the Apple Ile’s memory space is
organized, including the allocation of programmable memory for
the video display buffers.

Chapter 5 is a user manual for the Monitor that is included in the
built-in firmware. The Monitor is a system program that you can use
for program debugging at the machine level.

Chapter 6 describes the programmable features of the peripheral-
card connectors and gives guidelines for their use. It also describes
interrupt programming on the Apple Ile.

Chapter 7 is a description of the hardware that implements the
features described in the earlier chapters. This information is
included primarily for programmers and peripheral-card
designers, but it will also help you if you just want to understand
more about the way the Apple Ile works.

Additional reference information appears in the appendixes:

Appendix A is the manufacturer’s description of the Apple Ile’s
microprocessor.

Appendix B is a directory of the built-in I/O subroutines, including
their functions and starting addresses.

Appendix C describes differences among Apple II family
members.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ile.

Appendix E contains conversion tables of interest to programmers.

Appendix F contains additional copies of some of the tables that
appear in the body of the manual. The ones you will need to refer to
often are duplicated here for easy reference.

Appendix G contains information about using Apple Ile 80-column
text cards with the Apple Ile and high-level languages.

Preface: About This Manual

Appendix H discusses programming on the Apple Ile with the
Apple Super Serial Card.

Appendix I describes the international keyboards and character
sets. This appendix also contains schematic diagrams of the
international circuit boards.

Appendix J contains the source listing of the Monitor firmware. You
can refer to it to find out more about the operation of the Monitor
subroutines listed in Appendix B.

Following Appendix J is a glossary defining many of the technical
terms used in this manual. Some terms that describe the use of the
Apple Ile are defined in the glossaries of the other manuals listed
earlier.

Following the glossary is a selected bibliography of sources of
additional information.

The Apple lle family

Changes have been made in the Apple Ile since the original version
was introduced. The first change resulted in a version called the
enhanced Apple Ile. The latest version is called the extended
keyboard Apple Ile. These versions are all described in this
manual. Where there are differences between the original

Apple Ile, the enhanced Ile, and the extended keyboard Ile, they
will be called out in the manual. Otherwise, the three machines
operate identically.

Identifying your Apple lle

You can tell whether you have an enhanced or an original Apple Ile
when you start up your computer: an original Ile will display
“Apple] [” at the top of the monitor screen, while the enhanced
Apple 1le will display “Apple //e". The extended keyboard
Apple Ile is easily identified by the numeric keypad built into the
keyboard.

The Apple lle family Xix

Opcode Is short for operation
code and is used to describe the
basic Instructions performed by
the central processing unit of a
computer.

The original Apple lle

The original Apple Ile is the oldest member of the Ile family. It has
the following features:

O the 6502 microprocessor
0O 64K of RAM

O 40-column display (unless an optional 80-column text card is
installed)

The enhanced Apple lle

The enhanced Apple Ile includes the following changes from the
original Apple Ile:

O The 65C02 microprocessor, which is an improved version of the
6502 microprocessor found in the original Apple Ile. The 65C02
uses less power, has 27 new opcodes, and runs at the same speed
as the 6502. (See Chapter 7 and Appendix A.)

DO A new video ROM containing the same MouseText characters
found in the Apple Ilc. (See Chapter 2.)

O New Monitor ROMs (the CD and EF ROMs) containing the
enhanced Apple Ile firmware. (See Chapter 5.)

O The identification byte at $FBCO has been changed. In the
original Apple Ile it is $EA (decimal 234); in the enhanced
Apple Ile it is $EO (decimal 224).

O Recent models of the enhanced Ile include the Extended 80-
Column Text Card as a standard accessory, thus increasing the
available RAM in the enhanced ITe from 64K to 128K.

The enhanced Apple Ile includes a number of improved features in
addition to the changes listed above. The following sections
describe the improved features of the enhanced Ile.

Startup drives

You can use startup (boot) devices other than a Disk II® to start up
ProDOS® on the enhanced Apple Ile.

Apple II Pascal versions 1.3 and later may start up from slots 4, 5,
or 6 on a Disk II, ProFile™, or other Apple II disk drive. Apple II
Pascal versions 1.0 through 1.2 must start up from a Disk II in slot 6.

DOS 3.3 may be started from a Disk II in any slot.

XX Preface: About This Manual

When you tum on your Apple Ile, it searches for a disk drive
controller to start up from, beginning with slot 7 and working down
toward slot 1. As soon as a disk controller card is found, the

Apple Ile will try to load and execute the operating system found on
the disk. If the drive is not a Disk II, the operating system of the
startup volume must be either ProDOS or Apple II Pascal (version
1.3 or later). If it is a Disk II, the startup volume may be any Apple II
operating. system.

Video firmware

The enhanced Apple Ile has improved 80-column firmware:
O ‘The enhanced Apple Ile now supports lowercase input.
O Escape Control-E passes most control characters to the screen.

O Escape Control-D traps most control characters before they get
to the screen.

O Escape R was removed because uppercase characters are no
longer required by Applesoft.

Video enhancements

Both 80-column Pascal and 80-column mode Applesoft output are
faster than before, and scrolling is smoother. 40-column Pascal
performance is unchanged.

In the original Apple Ile, characters echoed to COUT1 during 80-
column operation were printed in every other column; the
enhanced Apple Ile firmware now prints the characters in each
column.

Applesoft 80-column support

The following Applesoft routines now work in 80-column mode:
O HTAB

O TAB

o SPC

O comma tabbing in PRINT statements

The enhanced Apple lle XXi

To find out more, see the Pascal
ProFlle Manager manual.

Applesoft lowercase support

Applesoft now lets you do all your programming in lowercase.
When you list your programs, all Applesoft keywords and variable
names are automatically in uppercase characters; literal strings and
the contents of DATA and REM statements are unchanged.

Apple Il Pascal

Apple II Pascal (version 1.2 and later) can now use a ProFile hard
disk through the Pascal ProFile Manager.

The Pascal 1.1 firmware no longer supports the control character
that switches from 80-column to 40-column operation. This control
character is no longer supported because it can put Pascal into a
condition where the exact memory configuration is not known.

System Monitor enhancemvenis

Enhancements to the Apple Ile’s built-in Monitor (described in
Chapter 5 in this manual) include the following:

O lowercase input

O ASCII input mode

O Monitor Search command
0 the Mini-Assembler

Interrupt handling

Interrupt-handler support in the enhanced Apple Ile firmware now
handles any Apple Ile memory configuration.

xxii Preface: About This Manual

The extended keyboard Apple lle

The extended keyboard Apple Ile includes the following changes
from the enhanced Apple Ile:

O The new keyboard contains a built-in 18-key numeric keypad.

O The Extended 80-Column Text Card is a standard feature. The
card is shipped installed in the auxiliary slot.

0O One 128K ROM IC replaces the two 64K Monitor ROM ICs (the
CD and EF ROMs).

O Two 64Kx4 RAM ICs replace the eight 64Kx1 RAM ICs.
O The single-wire Shift-key mod is standard.

RAM upgrade

Both the original Apple Ile and the enhanced Apple Ile are 64K
machines, expandable to 128K through the use of auxiliary memory
cards like the Extended 80-Column Text Card. The extended
keyboard Apple Ile has 64K of main memory, mounted on the
circuit board. However, because the Extended 80-Column Text Card
is now a standard feature, providing 64K of auxiliary memory, the
extended keyboard Ile comes “pre-expanded” to 128K of RAM.

The eight 64Kx1 RAM ICs on the original and enhanced Apple Ile
circuit boards have been replaced by two 64Kx4 ICs on the extended
keyboard Ile circuit board. This means that the extended keyboard
Apple Ile has two RAM ICs instead of eight like the original and
enhanced Ile’s. Pin-out diagrams for both RAM IC configurations
are provided in Chapter 7.

Single-wire Shift-key mod

The single-wire Shift-key mod is an option jumper point on the
circuit board that lets the extended keyboard Apple Ile detect the
Shift key with the mouse active. From a practical standpoint, the
single-wire Shift-key mod allows mouse-based programs to use
“Shift-click” control sequences on the extended keyboard Ile.

The single-wire Shift-key mod option jumper is labeled X6 on the
circuit board.

The extended keyboard Apple lle xxili -

Warning

Important

Extended keyboard lle

Definitions, cross-references,
and other short items appear in
marginal glosses iike this.

Symbols used in this manual

Special text in this manual is set off in several different ways, as
shown in these examples.

Important wamings appear like this. These flag potential danger
to the Apple lle, its software, or you.

Text set off In a box like this is less urgent or threatening than
text placed inside a Warning box, but still of a critical nature.

Text set off like this defines the differences in features or
operation between the three versions of the Appile lle.

< By the way: Information that is useful but incidental to the text
is set off like this. You may want to skip over such information
and return to it later.

Terms that are defined in a marginal gloss or in the glossary appear
in boldface.

Words that appear on the screen are shown in a monospaced font:
It looks like this.

XXlv Preface: About This Manual

Chapter 1

Infroduction

This first chapter introduces you to the Apple Ile itself. It shows you
what the inside looks like, identifies the main components that make
up the machine, and tells you where to find information about each

Removing the cover

Remove the cover of the Apple Ile by pulling up on the back edge
until the fasteners on either side pop loose, then move the cover an
inch or so toward the rear of the machine to free the front of the
cover, as shown in Figure 1-1. What you will see is shown in

Figure 1-2.

SRRNLIRRRRRIERINY

Figure 1-1
Removing ihe cover

Figure 1-2
Apple lle with the cover off

Warning There Is a red LED (light-emitting diode) inside the Apple lle, in
the left rear corner of the circuit board. If the LED is on, it means
that the power Is on and you must tumn it off before you insert
or remove anything. To avold damaging the Apple lle, don’t
even think of changing anything inside it without first turning off
the power.

2 Chapter 1: Introduction

ASCII stands for American
Standard Code for Information
Inferchange.

Extended keyboard lle

The keyboard

The keyboard is the primary input device for the Apple Ile. As
shown in Figure 1-3 it has a normal typewriter layout, uppercase and
lowercase, with all of the special characters in the ASCII character
set. The keyboard is fully integrated into the machine; its operation
is described in the first part of Chapter 2. Firmware subroutines for
reading the keyboard are described in Chapter 3.

The extended keyboard lle keyboard is laid out differently from
the original and enhanced lle keyboards, and includes an 18-
key numeric keypad. The extended keyboard lle keyboard is
shown In Figure 1-4,

Figure 1-3
Original and enhanced lle keyboard

Figure 1-4
Extended keyboard lle keyboard

The keyboard 3

The speaker

The Apple Ile has a small loudspeaker in the bottom of the case.
The speaker enables Apple Ile programs to produce a variety of
sounds that make the programs more useful and interesting. The
way programs control the speaker is described in Chapter 2.

The power supply

The power supply is inside the flat metal box along the left side of
the interior of the Apple Ile. It provides power for the main board
and for any peripheral cards installed in the Apple Ile.

The power supply produces four voltages: +5V, -5V, +12V, and
-12V. It is a high-efficiency switching supply; it includes special
circuits that protect it and the rest of the Apple Ile against short
circuits and other mishaps. Complete specifications of the
Apple Ile power supply appear in Chapter 7.

Warning The power switch and the socket for the power cord are
mounted directly on the back of the power supply’s metal
case. This mounting ensures that all the circuits that carry
dangerous voltages are Inside the power supply. Do not defeat
this design feature by attempting to open the power supply.

The circuit board

All the electronic parts of the Apple Ile are attached to the circuit
board, which is mounted flat in the bottom of the case.

Figure 1-5 shows the main integrated circuits (ICs) in the original
and enhanced Apple Ile’s. They are the central processing unit
(CPL), the keyboard encoder, the keyboard read-only memory
(ROM), the two interpreter ROMs, the video ROM, and the custom
integrated circuits: the Input Output Unit (IOU), the Memory
Management Unit (MMU), and the Programmed Array Logic (PAL)
device.

Chapter 1: Introduction

Extended keyboard lle The extended keyboard lle circuit board layout is much the
same as that shown in Figure 1-5. However, the two Interpreter
ROMs (CD ROM and EF ROM) have been replaced by a single

ROM., and the eight RAM ICs have been replaced by two RAM
ICs.

PRLE e

LE 1
e

CPU

PAL

MMU

[e]V}

Interpreter ROMs
Keyboard ROM

Keyboard encoder

Video ROM

Figure 1-5
Circuit board

The circuit board 5

The CPU used by both the enhanced Ile and the extended
keyboard Ile is the 65C02 microprocessor. The 65C02 is an 8-bit
microprocessor with a 16-bit address bus. The 65C02 runs at

1.02 MHz and performs up to 500,000 8-bit operations per second.
The specifications for the 65C02 are given in Appendix A.

The original version of the Apple Ile uses the 6502 microprocessor.
You can tell which version of Apple Ile you have by starting up your
machine. An original Apple Ile displays “Apple] [” at the top of
the screen during startup, while the enhanced and the extended
keyboard Apple Ile’s display “Apple //e”. This manual will call
out specific areas where the three versions of the Apple Ile differ.

Original lle The original lle uses the 6502 microprocessor. The 6502 is very
similar to the 65C02, except that It lacks ten Instructions and
two addressing modes found in the 65C02. In addition, the 6502
is an NMOS device, which means Its power consumption Is
higher than the CMOS 65C02. Except for these differences, and
some minor differences in the number of clock cycles required
for execution of some instructions, the 6502 and 65C02 are
identical.

The keyboard is decoded by an AY-3600-PRO or 9600-PRO
integrated circuit and a read-only memory (ROM). These devices
are described in Chapter 7.

The interpreter ROMs (or ROM, in the case of the extended
keyboard Ile) are integrated circuits that contain the Applesoft
BASIC interpreter. The ROMs are described in Chapter 7. The
Applesoft language is described in the Applesoft Tutorial and the
Applesoft BASIC Programmer’s Reference Manual.

Two of the large ICs are custom-made for the Apple Ile: the MMU
and the IOU. The MMU IC contains most of the logic that controls
memory addressing in the Apple Ile. The organization of the
memory is described in Chapter 4; the circuitry in the MMU itself is
described in Chapter 7.

The IOU IC contains most of the logic that controls the built-in
input/output features of the Apple Ile. These features are described
in Chapter 2 and Chapter 3; the IOU circuits are described in
Chapter 7.

Chapter 1: Introduction

: " :
PEFESARMNNFAARARAASSRRARANGRRETS
S S NSNSNAMRER SN AN NN NN SN AR

¥
w
>
*
@
=]

Figure 1-7
Auxiliary slot

Connectors on the circuit board

The seven slots lined up along the back of the Apple Ile circuit
board are the expansion slots, sometimes called peripheral slots.
(See Figure 1-6.) These slots make it possible to attach additional
hardware to the Apple Ile. Chapter 6 tells you how your programs
deal with the devices that plug into these slots; Chapter 7 describes
the circuitry for the slots themselves.

Figure 1-6
Expansion slots

The large slot next to the left side of the circuit board is the auxiliary
slot (Figure 1-7). If your Apple Ile has an auxiliary memory card or
80-Column Text Card, it will be installed in this slot. The Apple Ile
use this slot for the Extended 80-Column Text Card. Chapter 2
describes the 80-column display feature. The hardware and
firmware interfaces to either type of card are described in

Chapter 7.

There are also smaller connectors for game I/O and for an internal

RF (radio frequency) modulator. These connectors are described in
Chapter 7.

Connectors on the circuit board 7

8

Connectors on the back panel

The back of the Apple Ile has two miniature phone jacks for
connecting a cassette recorder: an RCA-type jack for a video
monitor, and a 9-pin D-type miniature connector for the hand
controls, as shown in Figure 1-8. In addition to these, there are
spaces for additional connectors used with the peripheral cards
installed in the Apple Ile. The installation manuals for the
peripheral cards contain instructions for installing the peripheral

connectors.

Figure 1-8
Back panel connectors

Chapter 1: Introduction

Chapter 2

Built-in 1/O
Devices

For descriptions of the built-in
1/0 hardware, refer to
Chapter 7.

Built-in I/O firmware routines are
described in Chapter 3.

This chapter describes the input and output (I/O) devices built into
the Apple Ile in terms of their functions and the way they are used b
programs. The built-in I/O devices are

the keyboard
the video-display generator

o
8]
O the speaker
O the cassette input and output
i

the game input and output

At the lowest level, programs use the built-in I/O devices by reading
and writing to dedicated memory locations. This chapter lists these
locations for each I/O device. It also gives the locations of the
internal soft switches that select the different display modes of the
Apple Ile.

% Built-in I/O routines: This method of input and
output—loading and storing directly to specific locations in
memory—is not the only method you can use. For many of
your programs, it may be more convenient to call the built-in
1/0 routines stored in the Apple Ile’s firmware.

The keyboard

The primary built-in input device for the Apple Ile is the keyboard.
The original and enhanced Ile keyboards have 63 keys, while the
extended keyboard Ile keyboard has 81 keys. Both keyboard types
have automatic repeat, which means that if you press any key longer
than you would during normal typing, the character code for that
key will be sent continuously until you release the key. Both
keyboard types also allow you to hold down any number of keys and
still press another key; this is known as N-key rollover.

The keyboard layout shown in Figure 2-1 is for the original and
enhanced Ile keyboards. The keyboard layout shown in Figure 2-2 is
for the extended keyboard Ile keyboard.

Apple Ile’s manufactured for sale outside the United States have a
slightly different standard keyboard arrangement and include
provisions for switching between different character sets. These
differences are described in Appendix I

10 Chapter 2: Built-in 1/O Devices

T lglwW]EJ]JR]T]Y

.)8(- g 3 - : Delete Eese(

Control A S D F G H

J K L ; ': IReturn

Shift 4 X Cc Vv B N I M <, > 7 Shift

¢ le]>1v]4

4 I N
Figure 2-1

Original and enhanced lle keyboard

Reset

2808AAR0ABAGHE
Tab QJWI]JE]JR]T]Y]U 1 O}]P {[}

cova | p f s lofFlafu]ofu]ofi]?] e
s}z x]clv]s IN IM S1Z]0] s
o o Bl B Ll<]=]]t

Figure 2-2
Extended keyboard lle keyboard

In addition to the keys normally used for typing characters, there
are four cursor-control keys with arrows: left, right, down, and up.
The cursor-control keys can be read the same as other keys; their
codes are $08, $15, $0A, and $0B. (See Table 2-2.)

Three special keys—Control, Shift, and Caps Lock—change the
codes generated by the other keys. The Control key is similar to the
ASCII CTRL key.

Three other keys have special functions: the Reset key, and two keys
marked with apples, one outlined (Open Apple) and one solid
(Solid Apple). Pressing the Reset key with the Control key depressed
resets the Apple Ile, as described in Chapter 4. The Apple keys are
connected to the one-bit game inputs, described later in this
chapter.

The keyboard 11

Extended keyboard lle

See Chapter 7 for a complete
description of the electrical
interface to the keyboard.

Hexadecimal refers to the base-
16 number system, which uses
the digits 0 through 9 and the six
letters A through F to represent
values from 10 to 15.

On the extended keyboard lle the Solid Apple key is labeled
Option; the Solid Apple and Option keys are functionally
identical. Also note that manuals accompanying products with
the Solid Apple labeled as Option may refer to the Open Apple
key as simply the Apple key.

The electrical interface between the Apple Ile and the keyboard is a
ribbon cable with a 26-pin connector. This cable carries the
keyboard signals to the encoding circuitry on the main board.

Reading the keyboard

The keyboard encoder and ROM generate all 128 ASCII codes, so all
the special character codes in the ASCII character set are available
from the keyboard. Machine-language programs obtain character
codes from the keyboard by reading a byte from the keyboard-data
location shown in Table 2-1.

Table 2-1

Keyboard memory locations
Location

Hex Decimal Description

$C000 49152 -16384 Keyboard data and strobe
$C010 49168 -16368 Any-key-down flag and clear-strobe switch

Your programs can get the code for the last key pressed by reading
the keyboard-data location. Table 2-1 gives this location in three
different forms: the hexadecimal value used in assembly language,
indicated by a preceding dollar sign ($); the decimal value used in
Applesoft BASIC; and the complementary decimal value used in
Apple Integer BASIC. (Integer BASIC requires that values greater
than 32,767 be written as the number obtained by subtracting 65,536
from the value. These are the decimal numbers shown as negative in
tables in this manual; refer to the Apple II BASIC Programming
Manual.) The low-order seven bits of the byte at the keyboard
location contain the character code; the high-order bit of this byte
is the strobe bit, described below.

12 Chapter 2; Built-in I/O Devices

Extended keyboard lle

Important

Your program can find out whether any key is down, except the
Reset, Control, Shift, Caps Lock, Open Apple, and Solid Apple (or
Option, on the extended keyboard Ile) keys, by reading from
location 49152 (hexadecimal $C000 or complementary decimal
—-16384). The high-order bit (bit 7) of the byte you read at this
location is called any-key-down; it is 1 if a key is down, and O if no
key is down. The value of this bit is 128; if a BASIC program gets this
information with a PEEK, the value is 128 or greater if any key is
down, and less than 128 if no key is down.

The Open Apple and Solid Apple keys are connected to switches 0
and 1 of the game I/O connector inputs. If OA is pressed, switch 0 is
“pressed,” and if Solid Apple is pressed, switch 1 is “pressed.”

On the extended keyboard lle, the Shift key is connected to
switch 2 of the game 1/O ports via the X6 jumper (single-wire
Shift-key mod jumper).

The strobe bit is the high-order bit of the keyboard-data byte. After
any key has been pressed, the strobe bit is high. It remains high
until you reset it by reading or writing at the clear-strobe location.
This location is a combination flag and switch; the flag tells whether
any key is down, and the switch clears the strobe bit. The switch
function of this memory location is called a soft switch because it is
controlled by software. In this case, it doesn’t matter whether the
program reads or writes, and it doesn’t matter what data the
program writes: the only action that occurs is the resetting of the
keyboard strobe. Similar soft switches, described later, are used for
controlling other functions in the Apple Ile.

Any time you read the any-key-down flag. you also clear the
keyboard strobe. If your program needs to read both the flag
and the strobe, it must read the strobe bit first.

After the keyboard strobe has been cleared, it remains low until
another key is pressed. Even after you have cleared the strobe, you
can still read the character code at the keyboard location. The data
byte has a different value, because the high-order bit is no longer
set, but the ASCII code in the seven low-order bits is the same until
another key is pressed. Table 2-2 shows the ASCII codes for most of
the keys on the keyboard of the Apple Ile.

The keyboard 13

There are several special-function keys that do not generate ASCII
codes. For example, you cannot read the Control, Shift, and Caps
Lock keys directly, but pressing one of these keys alters the character
codes produced by the other keys.

Extended keyboard lle As a result of the single-wire Shift-key mod, the Shift key can be
read directly in the extended keyboard lle.

Another key that doesn’t generate a code is Reset, located at the
upper-right corner of the keyboard; it is connected directly to the
Apple Ile’s circuits. Pressing Reset with Control depressed normally
causes the system to stop whatever program it's running and restart

The reset routine is described in itself. ‘This restarting process is called the resef routine.
Chapter 4,
Two more special keys are the Apple keys, Open Apple and Solid

Apple, located on either side of the Space bar. These keys are
connected to the one-bit game inputs, which are described later in
this chapter in the section *Switch Inputs.” Pressing them in
combination with the Control and Reset keys causes the built-in
firmware to perform special reset and self-test cycles, described
with the reset routine in Chapter 4.

Extended keyboard lle The Open Apple and Option keys are both located on the left
side of the Space bar on the extended keyboard lle, See
Figure 2-2 for a diagram of the keyboard iayout for the
extended keyboard lle.

Table 2-2
Keys and ASCIl codes

Normal Control Shift Both
Key Code Char Code Char Code Char Code Char
Delete 7F DEL 7F DEL 7F DEL 7F DEL
Left Arrow 08 BS 08 BS 08 BS 08 BS
Tab 09 HT 09 HT 09 HT 09 HT
Down Arrow 0A LF 0A LF 0A LF 0A LF
Up Arrow 0B vT 0B VT 0B vT 0B vT
Return 0D CR 0D CR 0D CR 0D CR
Right Arrow 15 NAK 15 NAK 15 NAK 15 NAK
Escape 1B ESC 1B ESC 1B ESC 1B ESC
Space 20 SP 20 SP 20 SP 20 Sp
v 27 ! 27 ! 22 o 22 .
, < 2C , 2C , 3C < 3C <

14 Chapter 2: Bullt-in 1/O Devices

Table 2-2 (continued)
Keys and ASCIl codes

Normal Control Shift Both

_Key Code Char Code Char Code Char Code Char
- _ 2D - 1F Us SF _ 1F US
: 2E . 2E . 3E > 3E >
/? 2F / 2F / 3F ? 3F ?
0) 30 0 30 0 29) 29)
1! 31 1 31 1 21 ! 21 !
2@ 32 2 00 NUL 40 @ 00 NUL
3# 33 3 33 3 23 # 23 #
4% 34 4 34 4 24 $ 24 $
5% 35 5 35 5 25 % 25 %
6A 36 6 1E RS SE A 1E RS
7& 37 7 37 7 26 & 26 &
8* 38 8 38 8 2A * 2A ¥

" 9¢(39 9 39 9 28 (28 (
5t 3B ; 3B ; 3A : 3A :
= 3D = 3D = 2B + 2B +
[{ 5B [1B ESC 7B { 1B ESC
\ sC \ 1C FS 7C | 1C FS
1} 5D] 1D GS 7D } 1D GS
S~ 60 N 60 N 7E ~ 7E ~
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
C 63 c 03 ETX 43 C 03 ETX
D 64 d 04 EOT 44 D 04 EOT
E 65 e 05 ENQ 45 E 05 ENQ
F 66 f 06 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS -
1 69 i 09 HT 49 I 09 HT
J 6A j 0A LF 4A J 0A IF
K 6B k 0B vT 4B K 0B VT
L 6C 1 0C FF 4C L 0oC FF
M 6D m oD CR 4D M oD CR
N » 6E n OE SO 4E N OE SO
O 6F o OF SI 4F (o) OF SI
P 70 o] 10 DLE 50 P 10 DLE
Q 71 q 11 DC1 51 Q 11 DC1
R 72 r 12 DC2 52 R 12 DC2
S 73 s 13 DC3 53 S 13 DC3
T 74 t 14 DC4 54 T 14 DC4
U 75 u 15 NAK 55 U 15 NAK

The keyboard 15

Table 2-2 (continued)
Keys and ASCIl codes

Normal Control Shift Both
Key Code Char Code Char Code Char Code Char
v 76 v 16 SYN 56 \Ys 16 SYN
w 77 w 17 “ETB 57 w 17 ETB
X 78 X 18 CAN 58 X 18 CAN
Y 79 y 19 EM 59 Y 19 EM
A 7A z 1A SUB SA z 1A SUB

Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer to Table E-3.

16

Extended keyboard lie

Important

The ASCII codes generated by the numerlc keypad on the
extended keyboard lle are the same as those for the
corresponding characters on the main keyboard. See Table 2-2.

The video display generator

The primary output device of the Apple Ile is the video display. You
can use any ordinary video monitor, either color or black-and-
white, to display video information from the Apple Ile. An
ordinary monitor is one that accepts composite video compatible
with the standard set by the NTSC (National Television Standards
Committee). If you use Apple Ile color graphics with a
monochrome (single-color) monitor, the display will appear as
that color (black, for example) and various patterns made up of
shades of that color.

If you are using only 40-column text and graphics modes, you can
use a television set for your video display. If the TV set has an input
connector for composite video, you can connect it directly to your
Apple Tle; if it does not, you'll need to attach a radio frequency (RF)
video modulator between the Apple Ile and the television set.

With the 80-column text card installed, the Apple lie can
produce an 80-column text display. However, if you use an
ordinary color or black-and-white television set, 80-column text’
will be too blurry to read. For a clear 80-column display, you

must use a high-resolution video monitor with a bandwidth of
14 MHz or greater.

Chapter 2: Built-in /O Devices

Original lle

For a full description of the video
signal and the connections to
the Molex-type pins, refer to the
section “Video Output Signals”
in Chapter 7.

The specifications for the video display are summarized in
Table 2-3.

Note that MouseText characters are not included in the
original version of the Apple lle.

The video signal produced by the Apple Ile is NTSC-compatible
composite color video. It is available at three places: the RCA-type
phono jack on the back of the Apple Ile, the single Molex-type pin
on the main circuit board near the back on the right side, and one
of the group of four Molex-type pins in the same area on the main
board. Use the RCA-type phono jack to connect a video monitor or
an external video modulator; use the Molex pins to connect the
type of video modulator that fits inside the Apple Ile case.

Table 2-3
Video display specifications

Display modes 40-column text; map: Figure 2-3
80-column text; map: Figure 2-4
Low-resolution color graphics; map: Figure 2-8
High-resolution color graphics; map: Figure 2-9
Double high-res color graphics; map: Figure 2-10

Text capacity 24 lines by 80 columns (character positions)
Character set 96 ASCII characters (uppercase and lowercase)
Display formats Normal, inverse, flashing, MouseText (Table 2-4)

Low-resolution 16 colors (Table 2-5), 40 horizontal by 48 vertical;
graphics map: Figure 2-8

High-resolution 6 colors (Table 2-6), 140 horizontal by 192 vertical
graphics (restricted)
Black-and-white: 280 horizontal by 192 vertical,
map: Figure 2-9

Double 16 colors (Table 2-7), 140 horizontal by 192
high-resolution vertical (no restrictions)
graphics Black-and-white: 560 horizontal by 192 vertical,

map: Figure 2-10

The video display generator 17

18

The Apple Ile can produce seven different kinds of video display:
text, 24 lines of 40 characters

text, 24 lines of 80 characters (with optional text card)
low-resolution graphics, 40 by 48, in 16 colors

high-resolution graphics, 140 by 192, in 6 colors
high-resolution graphics, 280 by 192, in black and white
double high-resolution graphics, 140 by 192, in 16 colors (with
optional 64K text card)

0 double high-resolution graphics, 560 by 192, in black and white
(with optional 64K text card)

The 2 text modes can display all 96 ASCII characters: uppercase and
lowercase letters, numbers, and symbols. The enhanced and
extended keyboard Apple Ile’s can also display MouseText
characters.

g ooooao

Any of the graphics displays can have four lines of text at the bottom
of the screen. The text may be either 40-column or 80-column,
except that double high-resolution graphics may only have 80-
column text at the bottom of the screen. Graphics displays with text
at the bottom are called mixed-mode displays.

The low-resolution graphics display is an array of colored blocks,
40 wide by 48 high, in any of 16 colors. In mixed mode, the four
lines of text replace the bottom eight rows of blocks, leaving 40 rows
of 40 blocks each.

The high-resolution graphics display is an array of dots, 280 wide by
192 high. There are six colors available in high-resolution displays,
but a given dot can use only four of the six colors. If color is used,
the display is 140 dots wide by 192 high. In mixed mode, the 4 lines
of text replace the bottom 32 rows of dots, leaving 160 rows of 280
dots each.

The double high-resolution graphics display uses main and
auxiliary memory to display an array of dots, 560 wide by 192 high.
All the dots are visible in black and white. If color is used, the -
display is 140 dots wide by 192 high with 16 colors available. In
mixed mode, the 4 lines of text replace the bottom 32 rows of dots,
leaving 160 rows of 560 (or 140) dots each. In mixed mode, the text
lines can be 80 columns wide only.

Chapter 2: Bullt-in 1/O Devices

Text modes

The text characters displayed include the uppercase and lowercase
letters, the ten digits, punctuation marks, and special characters.
Each character is displayed in an area of the screen that is seven
dots wide by eight dots high. The characters are formed by a dot
matrix five dots wide, leaving two blank columns of dots between
characters in a row, except for MouseText characters, some of
which are seven dots wide. Except for lowercase letters with
descenders and some MouseText characters, the characters are
only seven dots high, leaving one blank line of dots between rows of
characters.

The normal display has white (or other single color) dots on a black
background. Characters can also be displayed as black dots on a
white background; this is called inverse format.

Text character sets

The Apple Ile can display either of two text character sets: the
primary set or an alternate set. The forms of the characters in the
two sets are actually the same, but the available display formats are
different. The display formats are

O normal, with white dots on a black screen
O inverse, with black dots on a white screen

O flashing, alternating between normal and inverse

With the primary character set, the Apple Ile can display uppercase
characters in all three formats: normal, inverse, and flashing.
Lowercase letters can only be displayed in normal format. The
primary character set is compatible with most software written for
the Apple II and Apple II Plus models, which can display text in
flashing format but don’t have lowercase characters.

The alternate character set displays characters in either normal or
inverse format. In normal format, you can get

O uppercase letters
O lowercase letters
O numbers

O special characters

In inverse format, you can get

O MouseText characters (on the enhanced and extended keyboard
Ile’s)

The video display generator 19

O uppercase letters
O lowercase letters
O numbers

O special characters

The MouseText characters that replace the alternate uppercase
inverse characters in the range of $40-$5F in the original Apple Ile
are inverse characters, but they don'’t look like it because of the way
they have been constructed.

You select the character set by means of the alternate-text soft
switch, ALTCHAR, described later in the section “Display Mode
Switching.” Table 2-4 shows the character codes in hexadecimal for
the Apple Ile primary and alternate character sets in normal,
inverse, and flashing formats.

Each character on the screen is stored as one byte of display data.
The low-order six bits make up the ASCII code of the character
being displayed. The remaining two (high-order) bits select inverse
or flashing format and uppercase or lowercase characters. In the
primary character set, bit 7 selects inverse or normal format and
bit 6 controls character flashing. In the alternate character set, bit 6
selects between uppercase and lowercase, according to the ASCII
character codes, and flashing format is not available.

Table 2-4
Display character sets

Primary character set Alternate character set
Hex
values Character type Format Character type Format
$00-$1F Uppercase letters Inverse Uppercase letters Inverse
$20-$3F Special characters Inverse Special characters Inverse
$40-$5F Uppercase letters Flashing MouseText Inverse
$60-$7F Special characters Flashing Lowercase letters Inverse
$80-$9F Uppercase letters Normal Uppercase letters Normal
$A0-$BF Special characters Normal Special characters Normal
$CO-$DF Uppercase letters Normal Uppercase letters Normal
$E0-$FF Lowercase letters Normal Lowercase letters Normal

Note: To identify particular characters and values, refer to Table 2-2.

Original lle In the alternate character set of the original Apple lle,
characters in the range $40-$5F are uppercase inverse.

20 Chapter 2: Built-in 1/O Devices

40-column versus 80-column text

The Apple Ile has two modes of text display: 40-column and 80-
column. (The 80-column display mode described in this manual is
the one you get with the Apple Ile 80-Column Text Card or other
auxiliary-memory card installed in the auxiliary slot.) The number
of dots in each character does not change, but the characters in 80-
column mode are only half as wide as the characters in 40-column
mode. Compare Figure 2-3 and Figure 2-4. On an ordinary color or
black-and-white television set, the narrow characters in the 80-
column display blur together; you must use the 40-column mode to
display text on a television set.

Graphics modes

The Apple Ile can produce video graphics in three different modes.
All the graphics modes treat the screen as a rectangular array of
spots. Normally, your programs will use the features of some high-
level language to draw graphics dots, lines, and shapes in these
arrays; this section describes the way the resulting graphics data are
stored in the Apple Ile’s memory.

Low-resolution graphics

In the low-resolution graphics mode, the Apple Ile displays an
array of 48 rows by 40 columns of colored blocks. Each block can be
any one of sixteen colors, including black and white. On a black-
and-white monitor or television set, these colors appear as black,
white, and three shades of gray. There are no blank dots between
blocks; adjacent blocks of the same color merge to make a larger
shape.

Data for the low-resolution graphics display is stored in the same
part of memory as the data for the 40-column text display. Each
byte contains data for two low-resolution graphics blocks. The two
blocks are displayed one atop the other in a display space the same
size as a 40-column text character, seven dots wide by eight dots
high.

The video display generator 21

JLIST 0,100

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT : PRINT "Applesoft Char
acter Demo"

40 PRINT : PRINT "Which characte
r set--"

50 PRINT : INPUT "Primary (P) or
Alternate (A) ?";AS

60 IF LEN (A$) < 1 THEN 50

65 LET A$ = LEFTS$ (AS$,1)

70 IF AS$ = "P" THEN POKE 49166,

0

80 IF A$ = "A™ THEN POKE 49167,
0

90 PRINT : PRINT "...printing th

e same line, first™
100 PRINT " in NORMAL, then INVE
RSE ,then FLASH:": PRINT
]

Figure 2-3
40-column text display

JLIST 0,1100

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT : PRINT "Applesoft Character Demo"

40 PRINT : PRINT "Which character set--"

50 PRINT : INPUT "Primary (P) or Alternate (A) 2";A$

60 IF LEN (AS) < 1 THEN 50

70 LET A$ = LEFTS$ (AS,1)

80 IF A$ = "P" THEN POKE 49166,0

90 IF A$ = "A"™ THEN POKE 49167,0

100 PRINT : PRINT "...printing the same line, first"

150 PRINT ™ in NORMAL, then INVERSE ,then FLASH:": PRINT
160 NORMAL : GOSUB 1000

170 INVERSE : GOSUB 1000

180 FLASH : GOSUB 1000

190 NORMAL : PRINT : PRINT : PRINT "Press any key to repeat.™ GET A$
200 GOTO 10

1000 PRINT : PRINT "SAMPLE TEXT: Now is the time--12:00"
1100 RETURN

1

Figure 2-4
80-column text display

22 Chapter 2: Built-in 1/O Devices

Table 2-5
Low-resolution graphics colors
Nibble value
Dec Hex Color
0 $00 Black
1 $01 Magenta
2 $02 Dark blue
3 $03 Purple
4 $04 Dark green
5 $05 Gray
6 $06 Medium blue
7 $07 Light blue
8 $08 Brown
9 $09 Orange
10 $0A Gray 2
11 $0B Pink
12 $0C Light green
13 $0D Yellow
14 $0E Aquamarine
15 $0F White

Note: Colors may vary, depending
upon the controls on the monitor or

TV set.

Bits in Data Byte

4

3121160

1

2

314]5]|6

Figure 2-5

Dots on Graphics Screen

High-resolution display bits

Half a byte—four bits, or one nibble—is assigned to each graphics
block. Each nibble can have a value from 0 to 15, and this value
determines which one of 16 colors appears on the screen. The
colors and their corresponding nibble values are shown in

Table 2-5. In each byte, the low-order nibble sets the color for the
top block of the pair, and the high-order nibble sets the color for
the bottom block. Thus, a byte containing the hexadecimal value
$D8 produces a brown block atop a yellow block on the screen.

As explained later in the section “Video Display Pages,” the text
display and the low-resolution graphics display use the same area in
memory. Most programs that generate text and graphics clear this
part of memory when they change display modes, but it is possible
to store data as text and display it as graphics, or vice-versa. All you
have to do is change the mode switch, described later in this
chapter in the section “Display Mode Switching,” without changing
the display data. This usually produces meaningless jumbles on the
display, but some programs have used this technique to good
advantage for producing complex low-resolution graphics displays
quickly.

High-resolution graphics

In the high-resolution graphics mode, the Apple Ile displays an
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as described
later in this section. Adjacent dots of the same color merge to form
a larger colored area.

Data for the high-resolution graphics displays are stored in either of
two 8192-byte areas in memory. These areas are called high-
resolution Page 1 and Page 2; think of them as buffers where you
can put data to be displayed. Normally, your programs will use the
features of some high-level language to draw graphics dots, lines,
and shapes to display; this section describes the way the resulting
graphics data are stored in the Apple Ile’s memory.

The Apple Ile high-resolution graphics display is bit-mapped: each
dot on the screen corresponds to a bit in the Apple Ile’s memory.
The seven low-order bits of each display byte control a row of seven
adjacent dots on the screen, and forty adjacent bytes in memory
control a row of 280 (7 times 40) dots. The least significant bit of
each byte is displayed as the leftmost dot in a row of seven, followed
by the second-least significant bit, and so on, as shown in

Figure 2-5. The eighth bit (the most significant) of each byte is not
displayed,; it selects one of two color sets, as described later.

The video display generator 23

For more details about the way
the Apple lle produces color on a
TV set, see the section “Video
Display Modes” in Chapter 7.

On a black-and-white monitor, there is a simple correspondence
between bits in memory and dots on the screen. A dot is white if the
bit controlling it is on (1), and the dot is black if the bit is off (0). On
a black-and-white television set, pairs of dots blur together;
alternating black and white dots merge to a continuous gray.

On an NTSC color monitor or a color television set, a dot whose
controlling bit is off (0) is black. If the bit is on, the dot will be white
or a color, depending on its position, the dots on either side, and
the setting of the high-order bit of the byte.

Call the left-most column of dots column zero, and assume (for the
moment) that the high-order bits of all the data bytes are off (0). If
the bits that control dots in even-numbered columns (0, 2, 4, and
so forth) are on, the dots are purple; if the bits that control odd-
numbered columns are on, the dots are green—but only if the dots
on both sides of a given dot are black. If two adjacent dots are both
on, they are both white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: the dots in even-numbered columns are blue, and the dots
in odd-numbered columns are orange—again, only if the dots on
both sides are black. Within each horizontal line of seven dots
controlled by a single byte, you can have black, white, and one pair
of colors. To change the color of any dot to one of the other pair of
colors, you must change the high-order bit of its byte, which affects
the colors of all seven dots controlled by the byte.

In other words, high-resolution graphics displayed on a color
monitor or television set are made up of colored dots, according to
the following rules:

0 Dots in even columns can be black, purple, or blue.
O Dots in odd columns can be black, green, or orange.
O If adjacent dots in a row are both on, they are both white.

O The colors in each row of seven dots controlled by a single byte
are either purple and green, or blue and orange, depending on
whether the high-order bit is off (0) or on (1).

24 Chapter 2: Built-in 1/O Devices

For information about the way
NTSC color television works, see
the magazine articles listed in
the bibliography.

These rules are summarized in Table 2-6. The blacks and whites are
numbered to remind you that the high-order bit is different.

Table 2-6
High-resolution graphics colors

Bits 0-6 Bit 7 off Bit7 on

Adjacent columns off Black 1 Black 2
Even columns on Purple Blue

Odd columns on Green Orange
Adjacent columns on White 1 White 2

Note: Colors may vary depending upon the
controls on the monitor or television set.

The peculiar behavior of the high-resolution colors reflects the way
NTSC color television works. The dots that make up the Apple Ile
video signal are spaced to coincide with the frequency of the color
subcarrier used in the NTSC system. Alternating black and white
dots at this spacing cause a color monitor or TV set to produce
color, but two or more white dots together do not. Effective
horizontal resolution with color is 140 dots per line (280 divided
by 2).

Double high-resolution graphics

In the double high-resolution graphics mode, the Apple Ile
displays an array of colored dots 560 columns wide and 192 rows
deep. There are 16 colors available for use with double high-
resolution graphics (see Table 2-7).

Double high-resolution graphics is a bit-mapping of the low-order
seven bits of the bytes in the main-memory and auxiliary-memory
pages at $2000-$3FFF. The bytes in the main-memory and
auxiliary-memory pages are interleaved in exactly the same manner
as the characters in 80-column text: of each pair of identical
addresses, the auxiliary-memory byte is displayed first, and the
main-memory byte is displayed second. Horizontal resolution is
560 dots when displayed on a monochrome monitor.

The video display generator 25

Unlike high-resolution color, double high-resolution color has no
restrictions on which colors can be adjacent. Color is determined
by any four adjacent dots along a line. Think of a four-dot-wide
window moving across the screen: at any given time, the color
displayed will correspond to the four-bit value from Table 2-7 that
corresponds to the window’s position (Figure 2-10). Effective
horizontal resolution with color is 140 (560 divided by 4) dots per
line.

To use Table 2-7, divide the display column number by four, and
use the remainder to find the correct column in the table: ab0 is a
byte residing in auxiliary memory corresponding to a remainder
of zero (byte 0, 4, 8, and so on); mb1 is a byte residing in main
memory corresponding to a remainder of one (byte 1, 5, 9, and so
on); and similarly for ab3 and mb4.

Table 2-7
Double high-resolution graphics colors

Repeated
Color ab0 mbl ab2 mb3 bit pattern
Black $00 $00 $00 $00 0000
Magenta $08 $11 $22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green $22 $44 $08 $11 0100
Gray 1 $2A $55 $2A $55 0101
Green $66 $4C $19 $33 0110
Yellow $6E $5D $3B $77 0111
Dark blue $11 $22 $44 $08 1000
Purple $19 $33 $66 $4C 1001
Gray 2 $55 $2A 355 $2A 1010
Pink $5D $3B $77 $6E 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B $77 $6E $sD 1101
Aqua $77 $6E $sD $3B 1110
White $7F $7F $7F $7F 1111

26 Chapter 2: Built-in 1/O Devices

Video display pages

The Apple Ile generates its video displays using data stored in
specific areas in memory. These areas, called display pages, serve
as buffers where your programs can put data to be displayed. Each
byte in a display buffer controls an object at a certain location on
the display. In text mode, the object is a single character; in low-
resolution graphics, the object is two stacked colored blocks; and in
high-resolution and double high-resolution modes, it is a line of
seven adjacent dots.

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called text Page 1 and
text Page 2, and they are located at 10242047 (hexadecimal
$0400-$07FF) and 2048-3071 ($0800-$0BFF) in main memory.
Normally, only Page 1 is used, but you can put text or graphics data
into Page 2 and switch displays instantly. Either page can be
displayed as 40-column text, low-resolution graphics, or mixed
mode (four rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-
column mode—1920 bytes—but it cannot switch pages. The 80-
column text display uses a combination page made up of text Page 1
in main memory plus another page in auxiliary memory located on
the 80-column text card. This additional memory is not the same as
text Page 2—in fact, it occupies the same address space as text

Page 1, and there is a special soft switch that enables you to store
data into it. (See the next section, “Display Mode Switching.”) The
built-in firmware 1/O routines, described in Chapter 3, take care of
this extra addressing automatically; that is one reason to use those
routines for all your normal text output.

The high-resolution graphics mode also has two display pages, but
each page is 8192 bytes long. In the 40-column text and low-
resolution graphics modes each byte controls a display area seven
dots wide by eight dots high. In high-resolution graphics mode
each byte controls an area seven dots wide by one dot high. Thus, a
high-resolution display requires eight times as much data storage,
as shown in Table 2-8.

The double high-resolution graphics mode uses high-resolution
Page 1 in both main and auxiliary memory. Each byte in those
pages of memory controls a display area seven dots wide by one dot
high. This gives you 560 dots per line in black and white, and 140
dots per line in color. A double high-resolution display requires
twice the total memory as high-resolution graphics, and 16 times as
much as a low-resolution display.

The video display generator 27

Table 2-8
Video display page locations

Lowest address Highest address
Display
Display mode page Hex Dec Hex Dec
40-column text, 1 $0400 1024 $07FF 2047
low-resolution 2* $0800 2048 $0BFF 3071
graphics
80-column text 1 $0400 1024 $07FF 2047
2* $0800 2048 $OBFF 3071
High-resolution 1 $2000 8192 $3FFF 16383
graphics 2 $4000 16384 $SFFF 24575
Double high- 1t $2000 8192 $3FFF 16383
resolution 2t $4000 16384 $5FFF 24575
graphics

* This is not supported by firmware; for instructions on how to switch
pages, refer to the next section, “Display Mode Switching.”

t See the section “Double High-Resolution Graphics” earlier in this
chapter.

Display mode switching

You select the display mode that is appropriate for your application
by reading or writing to a reserved memory location called a soft
switch. In the Apple Ile, most soft switches have three memory
locations reserved for them: one for turning the switch on, one for
turning it off, and one for reading the current state of the switch.

Table 2-9 shows the reserved locations for the soft switches that

control the display modes. For example, to switch from mixed-
mode to full-screen graphics in an assembly-language program,
you could use the instruction

STA $C052
To do this in a BASIC program, you could use the instruction
POKE . 49234,0

Some of the soft switches in Table 2-9 must be read, some must be
written to, and for some you can use either action. When writing to a
soft switch, it doesn’t matter what value you write; the action occurs
when you address the location, and the value is ignored.

28 Chapter 2: Built-in 1/O Devices

Table 2-9
Display soft switches

Name Action Hex Function
ALTCHAR w $COOE Off: display text using
primary character set
ALTCHAR w $COOF On: display text using
alternate character set
RDALTCHAR R7 $CO1E Read ALTCHAR switch
(1 =on)
80COL w $Co00C Off: display 40 columns
80COL w $COOD On: display 80 columns
RDS80COL R7 $CO1F Read 80COL switch (1 = on)
80STORE W $C000 Off: cause PAGE2 on to
select auxiliary RAM
80STORE W $C001 On: allow PAGE2 to switch
' main RAM areas
RD80STORE R7 $C018 Read 80STORE switch
(1 =on)
PAGE2 R/W $C054 Off: select Page 1
PAGE2 R/W $C055 On: select Page 2 or, if

80STORE on, Page 1 in
auxiliary memory

RDPAGE2 R7 $C01C Read PAGE2 switch (1 = on)

TEXT R/W $C050 Off: display graphics or, if
MIXED on, mixed

TEXT R/W $C051 On: display text

RDTEXT R7 $CO1A Read TEXT switch (1 = on)

MIXED R/W $C052 Off: display only text or only
graphics

MIXED R/W $C053 On: if TEXT off, display text
and graphics

RDMIXED R7 $C01B Read MIXED switch (1 = on)

HIRES R/W $C056 Off: if TEXT off, display low-

resolution graphics

The video display generator 29

30

Table 2-9 (continued)
Display soft switches

Name Action Hex Function

HIRES R/W $C057 On: if TEXT off, display
high-resolution or, if
DHIRES on, double high-
resolution graphics

RDHIRES R7 $CO1D Read HIRES switch (1 = on)

I0UDIS W $CO7E On: disable IOU access for
addresses $C058 to $COSF;
enable access to DHIRES
switch®*

IOUDIS w $CO7F Off: enable IOU access for
addresses $C058 to $COSF;
disable access to DHIRES

switch*
RDIOUDIS R7 $CO7E Read IOUDIS switch (1 = of)f
DHIRES R/W $COSE On: if IOUDIS on, turn on
double high resolution
DHIRES R/W $COSF Off: if IOUDIS on, turn off
double high resolution
RDDHIRES R7 $CO7F Read DHIRES switch
1 = om)t
VBL R7 $C091 Vertical blanking

Note: W means write anything to the location, R means read the location,

R/W means read or write, and R7 means read the location and check bit 7.

* The firmware normally leaves IOUDIS on. See also t.

t Reading or writing any address in the range $C070-$CO7F also triggers
the paddle timer and resets VBLINT (Chapter 7).

< By the way: You may not need to deal with these functions by
reading and writing directly to the memory locations in
Table 2-9. Many of the functions shown here are selected
automatically if you use the display routines in the various high-
level languages on the Apple Ile.

Chapter 2: Built-in 1/O Devices

For a full description of the way
the Apple lle handles its display
memory, refer to the section
“Display Memory Addressing” in
Chapter 7.

Any time you read a soft switch, you get a byte of data. However, the
only information the byte contains is the state of the switch, and this
occupies only one bit—bit 7, the high-order bit. The other bits in
the byte are unpredictable. If you are programming in machine
language, the switch setting is the sign bit; as soon as you read the
byte, you can do a Branch Plus if the switch is off, or Branch Minus
if the switch if on.

If you read a soft switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is on, the
value will be equal to or greater than 128; if the switch is off, the
value will be less than 128.

Addressing display pages directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you to write
statements that control the text and graphics displays. Similarly, if
you are programming in assembly language, you may be able to use
the display features of the built-in I/O firmware. You should store
directly into display memory only if the existing programs can’t
meet your requirements.

The display memory maps are shown in Figures 2-6, 2-7, 2-8, 2-9,
and 2-10. All the different display modes use the same basic
addressing scheme: characters or graphics bytes are stored as rows
of 40 contiguous bytes, but the rows themselves are not stored at
locations corresponding to their locations on the display. Instead,
the display address is transformed so that three rows that are eight
rows apart on the display are grouped together and stored in the
first 120 locations of each block of 128 bytes ($80 hexadecimal). By
folding the display data into memory this way, the Apple Ile, like
the Apple II, stores all 960 characters of displayed text within 1K
bytes of memory.

The high-resolution graphics display is stored in much the same
way as text, but there are eight times as many bytes to store, because
eight rows of dots occupy the same space on the display as one row
of characters. The subset consisting of all the first rows from the
groups of eight is stored in the first 1024 bytes of the high-resolution
display page. The subset consisting of all the second rows from the
groups of eight is stored in the second 1024 bytes, and so on for a
total of 8 times 1024, or 8192 bytes. In other words, each block of
1024 bytes in the high-resolution display page contains one row of
dots out of every group of eight rows. The individual rows are stored
in sets of three 40-byte rows, the same way as the text display.

The video display generator 3

For more details about the way
the displays are generated, see
Chapter 7.

All of the display modes except 80-column mode and double high-
resolution graphics mode can use either of two display pages. The
display maps show addresses for each mode’s Page 1 only. To
obtain addresses for text or low-resolution graphics Page 2, add
1024 ($400); to obtain addresses for high-resolution Page 2, add
8192 ($2000).

The 80-column display and double higk -resolution graphics mode
work a little differently. Half of the data is stored in the normal text
Page-1 memory, and the other half is stored in memory on the 80-
column text card using the same addresses. The display circuitry
fetches bytes from these two memory areas simultaneously and
displays them sequentially: first the byte from the 80-column text
card memory, then the byte from the main memory. The main
memory stores the characters in the odd columns of the display,
and the 80-column text card memory stores the characters in the
even columns.

To store display data on the 80-column text card, first turn on the
80STORE soft switch by writing to location 49153 (hexadecimal
$C001 or complementary —16383). With 80STORE on, the page-
select switch, PAGE2, selects between the portion of the 80-column
display stored in Page 1 of main memory and the portion stored in
the 80-column text card memory. To select the 80-column text
card, turn the PAGE2 soft switch on by reading or writing at location
49237.

32 Chapter 2: Built-in 1/O Devices

SRR R SR N R R e e R BB
Row SO I VORI I YA RENIRIE SN REIRZUARNIBEERS
0 $400 1024 '
1 $480 1152
2 $500 1280
3 $580 1408
4 $600 1536
5 $680 1664
6 $700 1792
7 $780 1920
8 $428 1064
9 $4A8 1192
10 $628 1320
11 $5A8 1448
12 $628 1576
13 $6A8 1704
14 $728 1832
15 $7A8 1960
16 $450 1104
17 $4D0 1232
18 $550 1360
19 $5D0 1488
20 $650 1616
21 $6D0 1744
22 $750 1872
23 $7D0 2000
Figure 2-6

Map of 40-column text display

The video display generator

33

__JMainMemoryL
$00 $01 $02 $03 $04 $05 $06
Row | 012 3 4 b5 6

$400 1024

$480 1152

$500 1280
$580 1408
$600 1536
$680 1664 e

o

$700 1792

$780 1920
$428 1064
$4A8 1192
$528 1320 ‘ \
$5A8 1448
$628 1576

W 00 N O Ut W= O

i
=}

—
fouk

—
(o]

—
W

$6A8 1704
$728 1832
$7A8 1960
$450 1104
$4D0 1232

[ae
e

[y
o

—
>

s
=}

—
oo

$550 1360
$5D0 1488
$650 1616
$6D0 1744

—
o

oo
(=]

Do
—_

oo
oo

$750 1872

[S]
W

$7D0 2000

$00 $01 $02 $03 $04 $05 $06 $07
0 1 2 8 4 5 6 7T

Auxiliary Memory

Figure 2-7
Map of 80-column text display

34 Chapter 2: Built-in I/O Devices

$20 $21 $22 $23 $24 $25 $26 $27
32 33 34 3% 36 37 38 39

$20 $21 $22 $23 $24 $25 $26 $27 |
3 33 34 3 36 37 8 39

0 $400
2 $480
4 $500
6 $580
8 $600
10 $680
12 $700
14 $780
16 $428
18 $4A8
20 $528
22 $5A8
24 $628
26 $6A8
28 $728
30 $7A8
32 $450
34 $4D0
36 $550
38 $5D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

0 $00
1 $01
2 $02
3 $03
4 $04
5 $05
6 $06
7 $07
8 $08
9 $09
10 $0A
11 $0B
12 $0C
13 $0D
14 $0E
16 $0F
16 $10
17 $11
18 $12
19 $13
20 $14
21 $15
22 $16
23 $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 $1D
30 $1E
31 $IF
32 $20
33 $21
34 $22
35 $23
36 $24
37 $25
38 $26
39 27

40 $650
42 $6D0
44 $750
46 $7D0

1616
1744
1872
2000

Figure 2-8
Map of low-resolution graphics display

The video display generator

35

828828858252 358858 5508285222220 258583885
Row CrNm T NN e NN RN SN NBI B85 RS
0 $2000 8192
1 $2080 8320
% $2100 8448
3 $2180 8576
4 $2200 8704
5 $2280 8832
6 $2300 8960
7 $2380 9088
8 $2028 8232
9 $20A8 8360
10 $2128 8488 Nl
11 $21A8 8616 ~L]
12 $2228 8744
13 $22A8 8872 T 0 +80000
14 $2328 9000
s souAs o128 +1024 +$0400
16 $2050 8272 [P
17 $20D0 8400
18 $2150 8528 +3072 +$0C00
19 $21D0 8656
20 $2250 8784 +4096 +$1000
21 $2200 8912 +5120 +$1400
2 $2350 9040
23 $23D0 9168 +6144 +$1800
\ #7168 +$1C00
Figure 2-9

Map of high-resolution graphics display

36 Chapter 2: Built-in 1/O Devices

Row

$2000 8192
$2080 8320
$2100 8448
$2180 8576
$2200 8704
$2280 8832
$2300 8960
$2380 9088
$2028 8232
$20A8 8360
$2128 8488
$21A8 8616
$2228 8744
$22A8 8872
$2328 9000
$23A8 9128
$2050 8272
$20D0 8400
$2150 8528
$21D0 8656

$2250 8784
$22D0 8912
$2350 9040
$23D0 9168

W 0O S T W DN = O

— =
—_ O

p—
oo

—_
W

+1024 +$0400

—_
5=

[y
ot

+2048 +$0800

—
[=2]

—_
[

+3072 +$0C00

—
o

+4096 +$1000

—_
©

Do
(=}

+5120 +$1400

DO
—_

D
DO

+6144 +$1800

DO
W

+7168 +$1C00

$00 $01 $02 $03 $04 $05 $06 $07

0o 1 2 3 4 5 6 7
Auxiliary Memory

Figure 2-10
Map of double high-resolution graphics display

The video display generator 37

Important

Electrical specifications of the
speaker circuit appear in
Chapter 7.

Secondary inputs and outputs

In addition to the primary I/O devices—the keyboard and
display—there are several secondary input and output devices in
the Apple Ile. These devices are

the speaker (output)
cassette input and output
annunciator outputs
strobe output

switch inputs

0O 0 8B 0 g o

analog (hand control) inputs

These devices are similar in operation to the soft switches described
in the preceding section: you control them by reading or writing to
dedicated memory locations. Action takes place any time your
program reads or writes to one of these locations; information
written is ignored.

Some of these devices foggle—change state—each time they
are accessed. If you write using an indexed store operation,
the Apple lle’s microprocessor activates the address bus twice
during successive clock cycles, causing a device that toggles
each time It Is addressed to end up back in Its coriginal state. For
this reason. you should read. rather than write, to such
devices.

The speaker

The Apple Ile has a small speaker mounted toward the front of the
bottom plate. The speaker is connected to a soft switch that toggles;
it has two states, off and on, and it changes from one to the other
each time it is accessed. (At low frequencies, less than 400 Hz or so,
the speaker clicks only on every other access.)

If you switch the speaker once, it emits a dlick; to make longer
sounds, you access the speaker repeatedly. You should always use a
read operation to toggle the speaker. If you write to this soft switch,
it switches twice in rapid succession. The resulting pulse is so short
that the speaker doesn’t have time to respond; it doesn’t make a
sound.

38 Chapter 2: Built-in 1/O Devices

BELL1 is described in Appendix B.

Detailed electrical specifications
for the cassette input and
output are given in Chapter 7.

WRITE is described in Appendix B.

The soft switch for the speaker uses memory location 49200
(hexadecimal $C030). From Integer BASIC, use the
complementary address —16336. You can make various tones and
buzzes with the speaker by using combinations of timing loops in
your program. There is also a routine in the built-in firmware to
make a beep through the speaker. This routine is named BELL1.

Cassette input and output

There are two miniature phone jacks on the back panel of the
Apple Ile. You can use a pair of standard cables with miniature
phone plugs to connect an ordinary cassette tape recorder to the
Apple Ile and save programs and data on audio cassettes.

The phone jack marked with a picture of an arrow pointing toward a
cassette is the output jack. It's connected to a toggled soft switch, like
the speaker switch described above. The signal at the phone jack
switches from 0 to 25 millivolts or from 25 millivolts to 0 each time
you access the soft switch.

If you connect a cable from this jack to the microphone input of a
cassette tape recorder and switch the recorder to record mode, the
signal changes you produce by accessing this soft switch will be
recorded on the tape. The cassette output switch uses memory
location 49184 (hexadecimal $C020; complementary value
-16352). Like the speaker, this output will toggle twice if you write to
it, so you should only use read operations to control the cassette
output.

The standard method for writing computer data on audio tapes uses
tones with two different pitches to represent the binary states zero
and one. To store data, you convert the data into a stream of bits
and convert the bits into the appropriate tones. To save you the
trouble of actually programming the tones, and to ensure
consistency among all Apple II cassette tapes, there is a built-in
routine named WRITE for producing cassette data output.

The phone jack marked with a picture of an arrow coming from a
cassette is the input jack. It accepts a cable from the cassette
recorder’s earphone jack. The signal from the cassette is one volt
(peak-to-peak) audio. Each time the instantaneous value of this
audio signal changes from positive to negative, or vice versa, the
state of the cassette input circuit changes from zero to one or vice
versa. You can read the state of this circuit at memory location
49248 (hexadecimal $C060, or complementary decimal —16288).

Secondary inputs and outputs 39

READ is described in Appendix B.

Complete electrical
specifications of these inputs
and outputs are given in
Chapter 7.

For electrical specifications of
the annunciator outputs, refer
to Chapter 7.

When you read this location, you get a byte, but only the high-order
bit (bit 7) is valid. If you are programming in machine language,
this is the sign bit, so you can perform a Branch Plus or Branch
Minus immediately after reading this byte. BASIC is too slow to keep
up with the audio tones used for data recording on tape, but you
don’t need to write the program: there is a built-in routine named
READ for reading data from a cassette.

The hand control connector signals

Several inputs and outputs are available on a 9-pin D-type miniature
connector on the back of the Apple Ile: three one-bit inputs, or
switches, and four analog inputs. These signals are also available on
the 16-pin IC connector on the main circuit board, along with four
one-bit outputs and a data strobe. You can access all of these signals
from your programs.

Ordinarily, you connect a pair of hand controls to the 9-pin
connector. The rotary controls use two analog inputs, and the push-
buttons use two one-bit inputs. However, you can also use these
inputs and outputs for many other jobs. For example, two analog
inputs can be used with a two-axis joystick. Table 7-19 shows the
connector pin numbers.

Annunciator outputs

The four one-bit outputs are called annunciators. Each annunciator
can be used to turn a lamp, a relay, or some similar electronic
device on and off.

Each annunciator is controlled by a soft switch, and each switch
uses a pair of memory locations. These memory locations are
shown in Table 2-10. Any reference to the first location of a pair
turns the corresponding annunciator off; a reference to the second
location turns the annunciator on. There is no way to read the state
of an annunciator.

40 Chapter 2: Built-in 1/O Devices

Table 2-10
Annunciator memory locations

Annunciator Address

No. Pin* State Decimal Hex

0 15 Off 49240 -16296 $C058
On 49241 -16295 $C059

1 14 Off 49242 -16294 $CO5A
On 49243 -16293 $CO5B

2 13 Off 49244 16292 $C0O5C
On 49245 -16291 $COsD

3 12 Off 49246 -16290 $COSE
On 49247 -16289 $COSF

* Pin numbers given are for the 16-pin IC connector on the circuit board.

Strobe output

The strobe output is normally at +5 volts, but it drops to zero for
about half a microsecond any time its dedicated memory location
is accessed. You can use this signal to control functions such as data
latching in external devices. If you use this signal, remember that
memory is addressed twice by a write; if you need only a single
pulse, use a read operation to activate the strobe. The memory
location for the strobe signal is 49216 (hexadecimal $C040 or
complementary -16320).

Switch inputs

The three one-bit inputs can be connected to the output of another
electronic device or to a pushbutton. When you read a byte from
one of these locations, only the high-order bit—bit 7—is valid
information; the rest of the byte is undefined. From machine
language, you can do a Branch Plus or Branch Minus on the state of
bit 7. From BASIC, you read the switch with a PEEK and compare
the value with 128. If the value is 128 or greater, the switch is on.

The memory locations for these switches are 49249 through 49251
(hexadecimal $C061 through $C063, or complementary —16287
through —16285), as shown in Table 2-12. Switch 0 and switch 1 are
permanently connected to the Open Apple and Solid Apple (or
Option, on the extended keyboard Ile) keys on the keyboard; these
are the ones normally connected to the buttons on the hand
controls. Some software for the older models of the Apple II uses
the third switch, switch 2, as a way of detecting the Shift key. This
technique requires a hardware modification known as the single-
wire Shift-key mod.

Secondary inputs and outputs 41

Extended keyboard lle

Warning

Refer to the section "Game I/O
Signals” in Chapter 7 for details.

You should be sure that you really need the Shift-key mod before
you go ahead and do it. It probably is not worth it unless you have a
program that requires the Shift-key mod that you cannot either
replace or modify to work without it.

The extended keyboard lle already has the single-wire Shift-key
mod hardwired on the logic board.

If you make the Shift-key modification and connect a joystick
or other hand control that uses switch 2, you must be careful
never to close the switch and press Shift at the same time:
doing so produces a short circuit that causes the power supply
to turn off. When this happens, any programs or data in the
computer’s internal memory are lost.

< Shift-key mod: To perform this modification on your
Apple Ile, all you have to do is solder across the broken
diamond labeled X6 on the main circuit board. Remember to
turn off the power before changing anything inside the
Apple Ile. Also remember that changes such as this are at your
own risk and may void your warranty.

Analog inputs

The four analog inputs are designed for use with 150K ohm variable
resistors or potentiometers. The variable resistance is connected
between the +5V supply and each input, so that it makes up part of a
timing circuit. The circuit changes state when its time constant has
elapsed, and the time constant varies as the resistance varies. Your
program can measure this time by counting in a loop until the
circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset the
timing circuits. Accessing memory location 49264 (hexadecimal
$C070 or complementary —16272) does this. As soon as you reset
the timing circuits, the high bits of the bytes at locations 49252
through 49255 (hexadecimal $C064 through $C067 or
complementary -16284 through ~16281) are set to 1. If you PEEK at
them from BASIC, the values will be 128 or greater. Within about 3
milliseconds, these bits will change back to 0—byte values less than
128—and remain there until you reset the timing circuits again. The
exact time each of the four bits remains high is directly
proportional to the resistance connected to the corresponding
input. If these inputs are open—no resistances are connected—the
corresponding bits may remain high indefinitely.

42 Chapter 2: Built-in I/O Devices

PREAD is described in Appendix B.

To read the analog inputs from machine language, you can use a
program loop that resets the timers and then increments a counter
until the bit at the appropriate memory location changes to 0, or
you can use the built-in routine named PREAD. High-level
languages, such as BASIC, also include convenient means of
reading the analog inputs: refer to your language manuals.

Summary of secondary I/O locations

Table 2-11 shows the memory locations for all of the built-in I/O
devices except the keyboard and display. As explained earlier,
some soft switches should only be accessed by means of read
operations; those switches are marked.

Table 2-11
Secondary I/O memory locations

Address
Function Decimal Hex Access
Speaker 49200 -16336 $C030 Read only
Cassette out 49184 -16352 $C020 Read only
Cassette in 49248 -16288 $C060 Read only
Annunciator 0 on 49241 -16295 $C059
Annunciator 0 off 49240 -16296 $CO58
Annunciator 1 on 49243 -16293 $COSB
Annunciator 1 off 49242 -16294 $COSA
Annunciator 2 on 49245 -16291 $COsD
Annunciator 2 off 49244 -16292 $C0sC
Annunciator 3 on 49247 -16289 $COSF
Annunciator 3 off 49246 -16290 $COSE
Strobe output 49216 -16320 $C040 Read only
Switch input 0 (&) 49249 -16287 $C061 Read only
Switch input 1 (%) 49250 -16286 $C062 Read only
Switch input 2 49251 -16285 $C063 Read only
Analog input reset 49264 -16272 $C070
Analog input 0 49252 -16284 $C064 Read only
Analog input 1 49253 -16283 $C065 Read only
Analog input 2 49254 16282 $C066 Read only
Analog input 3 49255 -16281 $C067 Read only

Note: For connector identification and pin numbers, refer to Tables 7-18
and 7-19.

Secondary inputs and outputs 43

Chapter 3

Built-in 1/0O
Firmware

45

The Monitor, or System Monitor,
is a computer program that is
used to operate the computer at
the machine-language level.

46

Important

Almost every program on the Apple Ile takes input from the
keyboard and sends output to the display. The Monitor and the
Applesoft and Integer BASICs do this by means of standard I/O
subroutines that are built into the Apple Ile’s firmware. Many
application programs also use the standard I/O subroutines, but
Pascal programs do not; Pascal has its own I/O subroutines.

This chapter describes the features of these subroutines as they are
used by the Monitor and by the BASIC interpreters, and tells you
how to use the standard subroutines in your assembly-language
programs.

High-level languages already include convenient methods for
handling most of the functions described in this chapter. You
should not need to use the standard 1/O subroutines in your
programs unless you are programming in assembly language.

Table 3-1

Monitor firmware routines

Location0 Name Description

$C305 BASICIN With 80-column firmware active,

displays solid, blinking cursor;
accepts character from keyboard
$C307 BASICOUT Displays a character on the screen;

used when the 80-column firmware is
active (Chapter 3)

$FCOC CLREOL Clears to end of line from current
cursor position

$FCOE CLEOLZ Clears to end of line using contents of
Y register as cursor position

$FC42 CLREOP Clears to bottom of window

$F832 CLRSCR Clears the low-resolution screen

$F836 CLRTOP Clears top 40 lines of low-resolution
screen

$FDED court Calls output routine whose address is
stored in CSW (normally COUT]1,
Chapter 3)

$FDFO COUT1 Displays a character on the screen

(Chapter 3)

Chapter 3: Built-in I/O Firmware

Table 3-1 (continued)
Monitor firmware routines

Location0 Name Description

$FDSE CROUT Generates a carriage return character

$FD8B CROUTI1 Clears to end of line, then generates a
carriage return character

$FD6A GETLN Displays the prompt character;
accepts a string of characters by
means of RDKEY

$F819 HLINE Draws a horizontal line of blocks

$FC58 HOME Clears the window and puts cursor in
upper-left corner of window

$FD1B KEYIN With 80-column firmware inactive,
displays checkerboard cursor;
accepts character from keyboard

$F800 PLOT Plots a single low-resolution block on
the screen

$F94A PRBL2 Sends 1 to 256 blank spaces to the
output device

$FDDA PRBYTE Prints a hexadecimal byte

$FF2D PRERR Sends ERR and Control-G to the
output device

$FDE3 PRHEX Prints 4 bits as a hexadecimal number

$F941 PRNTAX Prints contents of A and X in
hexadecimal

$FDOC RDKEY Displays blinking cursor; goes to
standard input routine, normally
KEYIN or BASICIN

$F871 SCRN Reads color value of a low-resolution
block

$F864 SETCOL Sets the color for plotting in low

‘ resolution
$FC24 VTABZ Sets cursor vertical position
$F828 VLINE Draws a vertical line of low-resolution

blocks

Chapter 3: Built-in I/O Firmware 47

AUXMOVE and XFER are
described in the section
*Auxiliary-Memory Subroutines”
in Chapter 4.

The standard I/O subroutines listed in Table 3-1 are fully described
in this chapter. The Apple Ile firmware also contains many other
subroutines that you might find useful. Those subroutines are
described in Appendix B. Two of the built-in subroutines,
AUXMOVE and XFER, can help you use the optional auxiliary
memory.

Using the 1/O subroutines

Before you use the standard I/O subroutines, you should
understand a little about the way they are used. The Apple Ile
firmware operates differently when an option such as an 80-column
text card is used. This section describes general situations that affect
the operation of the standard I/O subroutines. Specific instances
are described in the sections devoted to the individual subroutines.

Apple Il compatibility

Compared with older Apple II models, the Apple Ile has some
additional keyboard and display features. To run programs that
were written for the older models, you can make the Apple Ile
resemble an Apple II Plus by turning those features off. The features
that you can turn off and on to put the Apple Ile into and out of
Apple II mode are listed in Table 3-2.

Table 3-2
Apple Il mode
Apple lle Apple Il mode
Keyboard Uppercase and lowercase Uppercase only
Display characters Inverse and normal only Flashing, inverse,
and normal
Display size 40-column; also 80-column 40-column only

with optional card

If the Apple Ile does not have an 80-column text card installed in
the auxiliary slot, it is almost in Apple II mode as soon as you turn it
on or reset it. One exception is the keyboard, which is both
uppercase and lowercase.

48 Chapter 3: Built-in 1/O Firmware

Original lle

The primary and alternate
character sets are described In
Chapter 2 in the section “Text
Character Sets.”

Original lle

The ALTCHAR soft switch is
described in Chapter 2.

On an original Apple lle. statements in Integer BASIC., Applesoft,
and DOS 3.3 commands must be typed in uppercase letters. To
be compatible with older software, you should switch the
Apple lle keyboard to uppercase by pressing Caps Lock.

Another feature on the Apple Ile that differs from the Apple II is the
displayed character set. An Apple II displays only uppercase
characters, but it displays them in three ways: normal, inverse, and
flashing. The Apple Ile can display uppercase characters all three
ways, and it can display lowercase characters in the normal way.
This combination is called the primary character set. When the
Apple Ile is first turned on or reset, it displays the primary character
set.

The Apple Ile has another character set, called the alternate
character set, that displays a full set of normal and inverse
characters, with the inverse uppercase characters between $40 and
$5F replaced on enhanced Apple Ile’s with MouseText characters.

In the original Apple lle, uppercase inverse characters appear
in place of the MouseText characters of the enhanced Apple lle
and the Apple lic.

You can switch character sets at any time by means of the ALTCHAR
soft switch.

The 80-column firmware

There are a few features that are normally available only with the 80-
column display. These features are identified in Table 3-3b and
Table 3-6. The firmware that supports these features is built into the
Apple Ile, but it is normally active only if an 80-column text card is
installed in the auxiliary slot.

When you turn on power or reset the Apple Ile, the 80-column
firmware is inactive and the Apple Ile displays the primary
character set, even if an 80-column text card is installed. When you
activate the 80-column firmware, it switches to the alternate
character set.

The built-in 80-column firmware is implemented as if it were
installed in expansion slot 3. Programs written for an Apple II or
Apple II Plus with an 80-column text card installed in slot 3 usually
will run properly on a Apple Ile with an 80-column text card in the
auxiliary slot.

Using the 1I/O subroutines 49

See the section “Switchin

g /0

Memory” in Chapter 6 for

details.

Important

SLOTC3ROM is described in

Chapter 6 in the section
“Switching I/O Memory.”

For more information about

interrupts, see Chapter 6.

Warning

If the Apple Ile has an 80-column text card and you want to use the
80-column display, you can activate the built-in firmware from
BASIC by typing PR#3.

To activate the 80-column firmware from the Monitor, press 3, then
Control-P. Notice that this is the same procedure you use to activate
a card in expansion slot 3. Any card installed in the auxiliary slot
takes precedence over a card installed in expansion slot 3.

Even though you activated the 80-column firmware by typing
PR#3, you should never deactivate it by typing PR#0, because
that just disconnects the firmware, leaving several soft switches
still set for 80-column operation. Instead, press the sequence
Escape-Q (see Table 3-6).

If there is no 80-column text card or other auxiliary memory card in
your Apple Ile, you can still activate the 80-column firmware and
use it with a 40-column display. First, set the SLOTC3ROM soft
switch located at $CO0A (49162). Then type PR#3 to transfer control
to the firmware.

When the 80-column firmware is active without a card in the
auxiliary slot, it does not work quite the same as it does with a card.
The functions that clear the display (CLREOL, CLEOLZ, CLREOP,
and HOME) work as if the firmware were inactive: they always clear
to the current color. In addition, interrupts are supported only with
a card installed in the auxiliary slot.

If you do not have an Interface card in either the auxiliary slot
or slot 3, don’t try to activate the firmware with PR# 3. Typing
PR#3 with no card installed transfers control to the empty
connector, with unpredictable results.

Programs activate the 80-column firmware by transferring control
to address $C300. If there is no card in the auxiliary slot, you must
set the SLOTC3ROM soft switch first. To deactivate the 80-column
firmware from a program, write a Control-U character via
subroutine COUT.

Chapter 3: Built-in 1/O Firmware

For more information about the
1/0 links, see the section
*Changing the Standard I/O
Links” in Chapter 6.

The old monitor

Apple II's and Apple II Pluses used a version of the System Monitor
different from the one the Apple Ile uses. It had the same standard
1/O subroutines, but a few of the features were different; for
example, there were no arrow keys for cursor motion. If you start the
Apple Ile with a DOS or BASIC disk that loads Integer BASIC into
the bank-switched area in RAM, the old Monitor (sometimes called
the Autostart Monito?) is also loaded with it. When you type INT
from Applesoft to activate Integer BASIC, you also activate this
copy of the old Monitor, which remains active until you either type
FP to switch back to Applesoft, which uses the new Monitor in ROM,
or type PR#3 to activate the 80-column firmware. Part of the
firmware’s initialization procedure checks to see which version of
the Monitor is in RAM. If it finds the old Monitor, it replaces it with
a copy of the new Monitor from ROM. After the firmware has
copied the new Monitor into RAM, it remains there until the next
time you start up the system.

The standard 1/0 links

When you call one of the character I/O subroutines (COUT and
RDKEY), the first thing that happens is an indirect jump to an
address stored in programmable memory. Memory locations used
for transferring control to other subroutines are sometimes called
vectors; in this manual, the locations used for transferring control
to the I/O subroutines are called I/O links. In a Apple Ile running
without a disk operating system, each I/O link is normally the
address of the body of the subroutine (COUT1 or KEYIN). If a disk
operating system is running, one or both of these links hold the
addresses of the corresponding DOS or ProDOS 1/O routines
instead. (DOS and ProDOS maintain their own links to the standard
1/0 subroutines.)

By calling the I/O subroutines that jump to the link addresses
instead of calling the standard subroutines directly, you ensure that
your program will work properly in conjunction with other software,
such as DOS or a printer driver, that changes one or both of the I/O
links.

For the purposes of this chapter, we shall assume that the I/O links
contain the addresses of the standard I/O subroutines—COUT1 and
KEYIN if the 80-column firmware is off, and BASICOUT and
BASICIN if it is on.

Using the |/O subroutines 51

52

Standard output features

The standard output routine is named COUT, pronounced “C-out,”
which stands for character out. COUT normally calls COUT],
which sends one character to the display, advances the cursor
position, and scrolls the display when necessary. COUT1 restricts
its use of the display to an active area called the text window,
described below.

COUT output subroutine

Your program makes a subroutine call to COUT at memory location
$FDED with a character in the accumulator. COUT then passes
control via the output link CSW to the current output subroutine,
normally COUT1 (or BASICOUT), which takes the character in the
accumulator and writes it out. If the accumulator contains an
uppercase or lowercase letter, a number, or a special character,
COUT1 displays it; if the accumulator contains a control character,
COUT1 either performs one of the special functions described
below or ignores the character.

Each time you send a character to COUT]1, it displays the character
at the current cursor position, replacing whatever was there, and
then advances the cursor position one space to the right. If the
cursor position is already at the right edge of the window, COUT1
moves it to the leftmost position on the next line down. If this would
move the cursor position past the end of the last line in the window,
COUT!1 scrolls the display up one line and sets the cursor position at
the left end of the new bottom line.

The cursor position is controlled by the values in memory locations
36 and 37 (hexadecimal $24 and $25). These locations are named
CH, for cursor horizontal, and CV, for cursor vertical. COUT1 does
not display a cursor, but the input routines described below do, and
they use this cursor position. If some other routine displays a
cursor, it will not necessarily put it in the cursor position used by
COUT1.

Chapter 3: Built-in I/O Firmware

Control characters with COUT1 and BASICOUT

COUT1 and BASICOUT do not display control characters. Instead,
the control characters listed in Tables 3-3a and 3-3b are used to
initiate some action by the firmware. Other control characters are
ignored. Most of the functions listed here can also be invoked from
the keyboard, either by typing the control character listed or by
using the appropriate escape code, as described in the section
“Escape Codes With KEYIN and BASICIN” later in this chapter. The
stop-list function, described separately, can only be invoked from
the keyboard.

Table 3-3a

Control characters, 80-column firmware off

Control ASCII Apple lle

character name name Action taken by COUT1

Control-G BEL Bell Produces a 1000 Hz tone
for 0.1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Control-J LF Line feed Moves cursor position
down to next line in
window, scrolls if needed

Control-M CR Return Moves cursor position to
left end of next line in
window, scrolls if needed

Table 3-3b

Control characters, 80-column firmware on

Control ASCll Apple lle

character name name Action taken by BASICOUT

Control-G BEL Bell Produces a 1000 Hz tone
for 0.1 second

Control-H BS Backspace Moves cursor position one

space to the left; from left
edge of window, moves to
right end of line above

Standard output features 53

54

Table 3-3b (continued)

Control characters, 80-column firmware on

Control ASCII Apple lle

character name name Action taken by BASICOUT

Control-J LF Line feed Moves cursor position
down to next line in
window; scrolls if needed

Control-K* VT Clear EOS Clears from cursor
position to the end of the
screen

Control-L* FF Home Moves cursor position to

and clear upper-left corner of

window and clears window

Control-M CR Return Moves cursor position to
left end of next line in
window, scrolls if needed

Control-N* SO Normal Sets display format
normal

Control-O* SI Inverse Sets display format
inverse

Control-Q* DC1 40-column Sets display to 40-column

Control-R* DC2 80-column Sets display to 80-column

Control-St+ DC3 Stop-list Stops listing characters on
the display until another
key is pressed

Control-U* NAK Quit Deactivates 80-column
video firmware

Control-V* SYN Scroll Scrolls the display down
one line, leaving the
cursor in the current
position

Control-W* ETB Scroll-up Scrolls the display up one
line, leaving the cursor in
the current position

Control-X CAN Disable Disables MouseText

MouseText character display; use

Chapter 3: Built-in 1/O Firmware

inverse uppercase

Table 3-3b (continued)
Control characters, 80-column firmware on

Control ASCII Apple lle

character name name Action taken by BASICOUT

Control-Y* EM Home Moves cursor position to
upper-left corner of
window (but doesn’t
clear)

Control-Z* SUB Clear line Clears the line the cursor
position is on

Control-[ESC Enable Maps inverse

MouseText uppercase characters to
MouseText characters

Control-* FS Forward Moves cursor position one
space space to the right, from
right edge of window,
moves it to left end of line
below

Control-]* GS Clear EOL Clears from the current
cursor position to the end
of the line (that is, to the
right edge of the window)

Control-_ Us Up Moves cursor up a line, no
scroll

* Doesn't work from the keyboard
1 Only works from the keyboard

The stop-list feature

When you are using any program that displays text via COUT1 (or
BASICOUT), you can make it stop updating the display by holding
down Control and pressing S. Whenever COUT1 gets a carriage
return from the program, it checks to see if you have pressed
Control-S. If you have, COUT1 stops and waits for you to press
another key. When you want COUT1 to resume, press another key;
COUT1 will send the carriage return it got earlier to the display,
then continue normally. The character code of the key you pressed
to resume displaying is ignored unless you pressed Control-C.
COUT!1 passes Control-C back to the program,; if it is a BASIC
program, this enables you to terminate the program while in stop-
list mode.

Standard output features 55

56

Original lle

Warning

The text window

After starting up the computer or after a reset, the firmware uses the
entire display. However, you can restrict video activity to any
rectangular portion of the display you wish. The active portion of
the display is called the text window. COUT1 or BASICOUT puts
characters into the window only; when it reaches the end of the last
line in the window, it scrolls only the contents of the window.

You can set the top, bottom, left side, and width of the text window
by storing the appropriate values into four locations in memory.
This enables your programs to control the placement of text in the
display and to protect other portions of the screen from being
written over by new text.

Memory location 32 (hexadecimal $20) contains the number of the
leftmost column in the text window. This number is normally 0, the
number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is 39 (hexadecimal
$27); in an 80-column display, the maximum value is 79
(hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text
window. For a 40-column display, it is normally 40 (hexadecimal
$28); for an 80-column display, it is normally 80

(hexadecimal $50).

COUT1 truncates the column width to an even value on the
original Apple lle.

On an original Apple lle, be careful not to let the sum of the
window width and the leftmost position In the window exceed
the width of the display you are using (40 or 80). If this happens,
it Is possible for COUT1 to put characters into memory locations
outside the display page. possibly into your current program or
data space.

Memory location 34 (hexadecimal $22) contains the number of the
top line of the text window. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the number of the
bottom line of the screen, plus 1. It is normally 24 (hexadecimal
$18) for the bottom line of the display. Its minimum value is 1.

Chapter 3: Built-in I/O Firmware

After you have changed the text window boundaries, nothing is
affected until you send a character to the screen.

Warning Any fime you change the boundaries of the text window, you
should make sure that the current cursor position (stored at CH
and CV) is inside the new window. If it is outside, it is possible for
COUT1 to put characters into memory locations outside the
display page. possibly destroying programs or data.

Table 3-4 summarizes the memory locations and the possible
values for the window parameters.

Table 3-4
Text window memory locations
Normal values Maximum values
Minimum
Location value 40 col. 80 col. 40 col. 80 col.
Window
parameter Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
Left edge 32 $20 00 $00 00 $00 00 $00 39 $27 79 $4F
Width 33 $21 00 $00 40 $28 80 $50 40 $28 80 $50
Top edge 34 $22 00 $00 00 $00 00 $00 23 $17 23 $17
Bottom edge 35 $23 01 $01 24 $18 24 $18 24 $18 24 $18

Table 3-5

Text format control values Inverse and flashmg text

Subroutine COUT1 can display text in normal format, inverse
format, or, with some restrictions, flashing format. The display
Dec Hex Display format format for any character in the display depends on two things: the
character set being used at the moment, and the setting of the two
255 $FF Normal, uppercase, high-order bits of the character’s byte in the display memory.

and lowercase As it sends your text characters to the display, COUT]1 sets the high-
127 $7F Flashing, uppercase, order bits according to the value stored at memory location 50

and symbols (hexadecimal $32). If that value is 255 (hexadecimal $FF), COUT1
sets the characters to display in normal format; if the value is 63
(hexadecimal $3F), COUT1 sets the characters to inverse format. If

Mask value

63 $3F Inverse, uppercase,

and lowercase the value is 127 (hexadecimal $7F) and if you have selected the
Note: These mask values apply primary character set, the characters will be displayed in flashing
only to the primary character set format. Note that flashing format is not available in the alternate
(see text). character set.

Standard output features 57

Important

Switching between character
sets is described in the section
“Display Mode Switching” in
Chapter 2.

Original lle

For more information on GETLN,
see the section “Editing With
GETLN” Iater in this chapter.

To control the display format of the characters, routine COUT1 uses
the value at location 50 as a logical mask to force the setting of the
two high-order bits of each character byte it puts into the display
page. It does this by performing the logical AND function on the
data byte and the mask byte. The result byte contains a 0 in any bit
that was 0 in the mask. BASICOUT, used when the 80-column
firmware is active, changes only the high-order bit of the data.

If the 80-column firmware Is inactive and you store a mask
value at location 50 with zeros in its low-order bits, COUT1 will
mask out those bits in your text. As a result, some characters
will be transformed into other characters. You should set the
mask to the values given In Table 3-5 only.

If you set the mask value at location 50 to 127 (hexadecimal $7F),
the high-order bit of each result byte will be 0, and the characters
will be displayed either as lowercase or as flashing, depending on
which character set you have selected. Refer to the tables of display
character sets in Chapter 2. In the primary character set, the next-
highest bit, bit 6, selects flashing format with uppercase characters.
With the primary character set you can display lowercase characters
in normal format and uppercase characters in normal, inverse, and
flashing formats. In the alternate character set, bit 6 selects
lowercase or special characters. With the alternate character set you
can display uppercase and lowercase characters in normal and
inverse formats.

On the original Apple lle, the MouseText characters are
replaced by uppercase inverse characters.

Standard input features

The Apple Ile’s firmware includes two different subroutines for
reading from the keyboard. One subroutine is named RDKEY,
which stands for read key. It calls the standard character input
subroutine KEYIN (or BASICIN when the 80-column firmware in
active), which accepts one character at a time from the keyboard.

The other subroutine is named GETLN, which stands for get line. By
making repeated calls to RDKEY, GETLN accepts a sequence of
characters terminated with a carriage return. GETLN also provides
on-screen editing features.

58 Chapter 3: Bulilt-in 1/O Firmware

Escape mode is described in the
next section, “Escape Codes.”

RDKEY input subroutine

A program gets a character from the keyboard by making a
subroutine call to RDKEY at memory location $FDOC. RDKEY sets
the character at the cursor position to flash, then passes control via
the input link KSW to the current input subroutine, which is
normally KEYIN or BASICIN.

RDKEY displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the
display (normally by using the COUT routine, described earlier).
The cursor displayed by RDKEY is a flashing version of whatever
character happens to be at that position on the screen. It is usually a
space, so the cursor appears as a blinking rectangle.

KEYIN input subroutine

KEYIN is the standard input subroutine when the 80-column
firmware is inactive; BASICIN is used when the 80-column firmware
is active. When called, the subroutine waits until the user presses a
key, then returns with the key code in the accumulator.

If the 80-column firmware is inactive, KEYIN displays a cursor by
alternately storing a checkerboard block in the cursor location,
then storing the original character, then the checkerboard again. If
the firmware is active, BASICIN displays a steady inverse space
(rectangle), unless you are in escape mode, when it displays a plus
sign (4) in inverse format.

KEYIN also generates a random number. While it is waiting for the
user to press a key, KEYIN repeatedly increments the 16-bit number
in memory locations 78 and 79 (hexadecimal $4E and $4F). This
number keeps increasing from 0 to 65535, then starts over again

at 0. The value of this number changes so rapidly that there is no
way to predict what it will be after a key is pressed. A program that
reads from the keyboard can use this value as a random number or
as a seed for a random-number routine.

When the user presses a key, KEYIN accepts the character, stops
displaying the cursor, and returns to the calling program with the
character in the accumulator.

Standard input features 59

Escape codes with KEYIN and BASICIN

KEYIN has special functions that you invoke by typing escape codes
on the keyboard. An escape code is obtained by pressing Escape,
releasing it, and then pressing some other key. See Table 3-6; the
notation in the table means press Escape, release it, then press the
key that follows.

Table 3-6 includes three sets of cursor-control keys. The first set
consists of Escape followed by A, B, C, or D. The letter keys can be
either uppercase or lowercase. These keys are the standard cursor-
motion keys on older Apple II models; they are present on the
Apple Ile primarily for compatability with programs written for old
machines.

Cursor motion in escape mode

The second and third sets of cursor-control keys are listed together
because they activate escape mode. In escape mode, you can keep
using the cursor-motion keys without pressing Escape again. This
enables you to perform repeated cursor moves by holding down the
appropriate key.

When the 80-column firmware is active, you can tell when BASICIN
is in escape mode: it displays a plus sign in inverse format as the
cursor. You leave escape mode by typing any key other than a
cursor-motion key.

The escape codes with the directional arrow keys are the standard
cursor-motion keys on the Apple Ile. The escape codes with the I, J,
K, and M keys are the standard cursor-motion keys on the

Apple 1I Plus, and are present on the Apple Ile for compatability
with the Apple II Plus. On the Apple Ile, the escape codes with the I,
J, K, and M keys function with either uppercase or lowercase letters.

Table 3-6

Escape codes

Escape code Function

Escape @ - Clears window and homes cursor

(places it in upper-left corner of
screen), then exits from escape mode

Escape A ora Moves cursor right one line; exits from
escape mode

Escape B orb Moves cursor left one line; exits from
escape mode

Chapter 3: Built-in 1/O Firmware

Table 3-6 (continued)
Escape codes

Escape code Function

Escape C or ¢ Moves cursor down one line; exits from
escape mode

Escape D or d Moves cursor up one line; exits from
escape mode

Escape Eore Clears to end of line; exits from escape
mode

Escape F or f Clears to bottom of window; exits from
escape mode

EscapeIori Moves the cursor up one line; remains

or Escape Up Arrow in escape mode (see text)

Escape J or j Moves the cursor left one space;

or Escape Left Arrow remains in escape mode (see text)

Escape K or k Moves the cursor right one space;

or Escape Right Arrow remains in escape mode (see text)

Escape M or m Moves the cursor down one line;

or Escape Down Arrow remains in escape mode (see text)

Escape 4 If 80-column firmware is active, switches
to 40-column mode; sets links to
BASICIN and BASICOUT; restores
normal window size; exits from escape
mode

Escape 8 If 80-column firmware is active, switches

Escape Control-D

Escape Control-E
Escape Control-Q

to 80-column mode; sets links to
BASICIN and BASICOUT,; restores
normal window size; exits from escape
mode

Disables control characters; only
carriage return, line feed, BELL, and
backspace have an effect when printed

Reactivates control characters

If 80-column firmware is active,
deactivates 80-column firmware; sets
links to KEYIN and COUT],; restores
normal window size; exits from escape
mode

Standard input features 61

Table 3-7

Prompt characters

Prompt
character

Program requesting
input

?

62

User’s BASIC program
(NPUT statement)

Applesoft BASIC
(Appendix D)

Integer BASIC
(Appendix D)

Firmware Monitor
(Chapter 5)

GETLN input subroutine

Programs often need strings of characters as input. While it is
possible to call RDKEY repeatedly to get several characters from
the keyboard, there is a more powerful subroutine you can use. This
routine is named GETLN, which stands for get line, and it starts at
location $FD6A. Using repeated calls to RDKEY, GETLN accepts
characters from the standard input subroutine—usually
KEYIN—and puts them into the input buffer located in the memory
page from $200 to $2FF. GETLN also provides the user with on-
screen editing and control features, described in the next section,
“Editing With GETLN.”

The first thing GETLN does when you call it is display a prompting
character, called simply a prompt. The prompt indicates to the
user that the program is waiting for input. Different programs use
different prompt characters, helping to remind the user which
program is requesting the input. For example, an INPUT statement
in a BASIC program displays a question mark (?) as a prompt. The
prompt characters used by the different programs on the Apple Ile
are shown in Table 3-7.

GETLN uses the character stored at memory location 51
(hexadecimal $33) as the prompt character. In an assembly-
language program, you can change the prompt to any character you
wish. In BASIC, changing the prompt character has no effect,
because both BASIC interpreters and the Monitor restore it each
time they request input from the user.

As you type the character string, GETLN sends each character to the
standard output routine—normally COUT1—which displays it at the
previous cursor position and puts the cursor at the next available
position on the display, usually immediately to the right. As the
cursor travels across the display, it indicates the position where the
next character will be displayed.

GETLN stores the characters in its buffer, starting at memory
location $200 and using the X register to index the buffer. GETLN
continues to accept and display characters until you press Return;
then it clears the remainder of the line the cursor is on, stores the
carriage-return code in the buffer, sends the carriage-return code to
the display, and returns to the calling program.

Chapter 3: Built-in 1/O Firmware

Important

The maximum line length that GETLN can handle is 255 characters.
If the user types more than this, GETLN sends a backslash (\) and a
carriage return to the display, cancels the line it has accepted so far,
and starts over. To warn the user that the line is getting full, GETLN
sounds a bell (tone) at every keypress after the 248th.

In the Apple Il and the Apple Il Plus, the GETLN routine converts
all inputs to uppercase. GETLN In the Apple lle does not do this,
even In Apple Il mode. To get uppercase Input for BASIC, use
Caps Lock.

Editing with GETLN

Subroutine GETLN provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. For an
introduction to editing with these features, refer to the Applesoft
Tutorial. Any program that uses GETLN for reading the keyboard
has these features.

Cancel line

Any time you are typing a line, pressing Control-X causes GETLN to
cancel the line. GETLN displays a backslash (\) and issues a carriage
return, then displays the prompt and waits for you to type a new

line. GETLN takes the same action when you type more than 255
characters, as described earlier.

Backspace

When you press Left Arrow, GETLN moves its buffer pointer back
one space, effectively deleting the last character in its buffer. It also
sends a backspace character to routine COUT, which moves the
display position and the cursor back one space. If you type another
character now, it will replace the character you backspaced over,
both on the display and in the line buffer. Each time you press Left
Arrow, it moves the cursor left and deletes another character, until
you reach the beginning of the line. If you then press Left Arrow one
more time, you have cancelled the line, and GETLN issues a
carriage return and displays the prompt.

Standard Input features 63

Retype

Right Arrow has a function complementary to the backspace
function. When you press Right Arrow, GETLN picks up the
character at the display position just as if it had been typed on the
keyboard. You can use this procedure to pick up characters that you
have just deleted by backspacing across them. You can use the
backspace and retype functions with the cursor-motion functions to
edit data on the display. (See the earlier section “Cursor Motion in
Escape Mode.”)

Monitor firmware support

Table 3-8 summarizes the addresses and functions of the video
display support routines the Monitor provides. These routines are
described in the subsections that follow.

Table 3-8
Video firmware routines

Location Name Description

$C307 BASICOUT Displays a character on the screen
when 80-column firmware is active

$FCOC CLREOL Clears to end of line from current
cursor position

$FCOE CLEOLZ Clears to end of line using contents of
Y register as cursor position

$FC42 CLREOP Clears to bottom of window

$F832 CLRSCR Clears the low-resolution screen

$F836 CLRTOP Clears top 40 lines of low-resolution
screen

$FDED COuT Calls output routine whose address is
stored in CSW (normally COUT1,
Chapter 3)

$FDF0 COUT1 Displays a character on the screen
(Chapter 3)

$FDSE CROUT Generates a carriage return character

$FD8B CROUT1 Clears to end of line, then generates a

carriage return character

64 Chapter 3: Built-in 1/O Firmware

Table 3-8 (continued)
Video firmware routines

Location Name Description

$F819 HLINE Draws a horizontal line of blocks

$FCs8 HOME Clears the window and puts cursor in
upper-left corner of window

$F800 PLOT Plots a single low-resolution block on
the screen

$F94A PRBL2 Sends 1 to 256 blank spaces to the
output device whose address is in CSW

$FDDA PRBYTE Prints a hexadecimal byte

$FF2D PRERR Sends ERR and Control-G to the output
device whose output routine address is
in CSW

$FDE3 PRHEX Prints 4 bits as a hexadecimal number

$F941 PRNTAX Prints contents of A and X in
hexadecimal

$F871 SCRN Reads color value of a low-resolution
block on the screen

$F864 SETCOL Sets the color for plotting in low
resolution

$FC24 VTABZ Sets cursor vertical position (Setting CV

at location $25 does not change
vertical positon until a carriage return.)

$F828 VLINE Draws a vertical line of low-resolution
blocks

BASICOUT, $C307

BASICOUT is essentially the same as COUT1—BASICOUT is used
instead of COUT1 when the 80-column firmware is active.
BASICOUT displays the character in the accumulator on the display
screen at the current cursor position and advances the cursor. It
places the character using the setting of the inverse mask (location
$32). BASICOUT handles control characters; see Table 3-3b.
When it returns control to the calling program, all registers are
intact.

Monitor firmware support 65

See the section “Control
Characters With COUT1 and
BASICOUT” earlier In this
chapter for more information on
COUTI.

CLREOL, $FC9C

CLREOL clears a text line from the cursor position to the right edge
of the window. This routine destroys the contents of A and Y.

CLEOLZ, $SFC9E

CLEOLZ clears a text line to the right edge of the window, starting at
the location given by base address BASL, which is indexed by the
contents of the Y register. This routine destroys the contents of A
and Y.

CLREOP, $FC42

CLREOP clears the text window from the cursor position to the
bottom of the window. This routine destroys the contents of A
and Y.

CLRSCR, $F832

CLRSCR clears the low-resolution graphics display to black. If you
call this routine while the video display is in text mode, it fills the
screen with inverse-mode at-sign (@) characters. This routine
destroys the contents of A and Y.

CLRTOP, $F836

CLRTOP is the same as CLRSCR, except that it clears only the top 40
rows of the low-resolution display.

COUT, $FDED

COUT calls the current character output subroutine. (See the
section “COUT Output Subroutine” earlier in this chapter.) The
character to be sent to the output device should be in the
accumulator. COUT calls the subroutine whose address is stored in
CSW (locations $36 and $37), which is usually the standard
character output subroutine COUT1 (or BASICOUT).

COUT1, $FDFO0

COUT1 displays the character in the accumulator on the display
screen at the current cursor position and advances the cursor. It
places the character using the setting of the inverse mask

(location $32). It handles these control characters: carriage return,
line feed, backspace, and bell. When it returns control to the
calling program, all registers are intact.

66 Chapter 3: Built-in 1/O Firmware

CROUT, $FDSE

CROUT sends a carriage return to the current output device.

CROUT1, $FD8B

CROUTI1 clears the screen from the current cursor position to the
edge of the text window, then calls CROUT.

HLINE, $F819

HLINE draws a horizontal line of blocks of the color set by SETCOL
on the low-resolution graphics display. Call HLINE with the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal
coordinate in location $2C. HLINE returns with A and Y scrambled
and X intact.

HOME, $FC58
HOME clears the display and puts the cursor in the upper-left
corner of the screen.

PLOT, $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. Call PLOT with the vertical
coordinate of the line in the accumulator, and its horizontal
position in the Y register. PLOT returns with the accumulator
scrambled, but X and Y intact.

PRBL2, $F94A

PRBL2 sends from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to
send. If X = $00, then PRBLANK will send 256 blanks.

PRBYTE, $FDDA

PRBYTE sends the contents of the accumulator in hexadecimal to
the current output device. The contents of the accumulator are
scrambled.

PRERR, $FF2D

PRERR sends the word ERR, followed by a bell character, to the
standard output device. On return, the accumulator is scrambled.

Monitor firmware support 67

68

PRHEX, $FDE3

PRHEX prints the lower nibble of the byte in the accumulator as a
single hexadecimal digit. On return, the contents of the
accumulator are scrambled.

PRNTAX, $F941

PRNTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte printed,
taband the X register contains the second. On return, the contents
of the accumulator are scrambled.

SCRN, $F871

SCRN returns the color value of a single block on the low-resolution
display. Call it with the vertical position of the block in the
accumulator and the horizontal position in the Y register. The
block’s color is returned in the accumulator. No other registers are
changed.

SETCOL, $F864

SETCOL sets the color used for plotting in low-resolution graphics
to the value passed in the acumulator. The colors and their values
are listed in Table 2-6.

VTABZ, $FC24

VTABZ sets the cursor vertical position. Unlike setting the position
at location $25, change of cursor position doesn’t wait until a
carriage return character has been sent.

VLINE, $F828

VLINE draws a vertical line of blocks of the color set by SETCOL on
the low-resolution display. Call VLINE with the horizontal
coordinate of the line in the Y register, the top vertical coordinate
in the accumulator, and the bottom vertical coordinate in
location $2D. VLINE returns with the accumulator scrambled

1/0 firmware support

Apple Ile video firmware conforms to the I/O firmware protocol of
Apple II Pascal 1.1. However, it does not support windows other
than the full 80-by-24 window in 80-column mode, and the full 40-
by-24 window in 40-column mode. The video protocol table is
shown in Table 3-9.

Chapter 3: Built-in 1/O Firmware

Table 3-9
Slot 3 firmware protocol table

Address Value Description

$C30B $01 Generic signature byte of firmware cards.

$C30C $88 80-column card device signature.

$C30D $ii $C3ii is entry point of initialization routine (PINIT).
$C30E $rr $C3rr is entry point of read routine (PREAD).
$C30F $ww $C3ww is entry point of write routine (PWRITE).
$C310 $ss $C3ss is entry point of the status routine
(PSTATUS).

PINIT, $C30D

PINIT does the following:

O sets a full 80-column window

O sets 80STORE ($C001)

O sets 80COL ($C00D)

O switches on ALTCHAR ($CO0F)

O clears the screen; places cursor in upper-left corner
O displays the cursor

PREAD, $C30E

PREAD reads a character from the keyboard and places it in the
accumulator with the high bit cleared. It also puts a zero in the
X register to indicate IORESULT = GOOD.

PWRITE, $C30F

PWRITE should be called after placing a character in the
accumulator with its high bit cleared. PWRITE does the following:
O It turns the cursor off.

O If the character in the accumulator is not a control character, it
turns the high bit on for normal display or off for inverse display,
displays it at the current cursor position, and advances the
cursor. If the character at the end of a line, PWRITE does carriage
return but not line feed. (See Table 3-10 for control character
functions.)

When PWRITE has completed this, it

O tums the cursor back on (if it was not intentionally turned off)

O puts a zero in the X register IORESULT = GOOD) and returns to
the calling program

1/O firmware support 69

Table 3-10
Pascal video control functions

Control- Hex Function performed

Eore $05 Turns cursor on (enables cursor display)
Forf $06 Turns cursor off (disables cursor display)
Gorg $07 Sounds bell (beeps)

Horh $08 Moves cursor left one column. If cursor was at

beginning of line, moves it to end of
preceding line

Jorj $0A Moves cursor down one row; scrolls if needed

Kork $0B Clears to end of screen

Lorl $0C Clears screen; moves cursor to upper-left of
screen

Morm $0D Moves cursor to column 0

Norn $0E Displays subsequent characters in normal
video (Characters already on display are
unaffected.)

Ooro $OF Displays subsequent characters in inverse
video (Characters already on display are
unaffected.)

Vorv $16 Scrolls screen up one line; clears bottom line

W orw $17 Scrolls screen down one line; clears top line

Yory $19 Moves cursor to upper-left (home) position
on screen

Zorz $1A Clears entire line that cursor is on

| or\ $1C Moves cursor right one column; if at end of

line, does Control-M

}or] $1D Clears to end of the line the cursor is on,
including current cursor position; does not
move cursor

Aorb $1E GOTOxy: initiates a GOTOxy sequence;
interprets the next two characters as x+32 and
y+32, respectively

$1F If not at top of screen, moves cursor up one
line

70 Chapter 3: Built-in I/O Firmware

PSTATUS, $C310

A program that calls PSTATUS must first put a request code in the
accumulator: either a 0, meaning “Ready for output?” or a 1,
meaning “Is there any input?” PSTATUS returns with the reply in the
carry bit: 0 (No) or 1 (Yes).

PSTATUS returns with a 0 in the X register CORESULT = GOOD),

unless the request was not 0 or 1; then PSTATUS returns with a 3 in
the X register IORESULT = ILLEGAL OPERATION).

1/O firmware support 71

wod-auljuOzajddy mmm wo.Lf pappojumo(q

Chapter 4

Memory
Organization

73

For information about these
shared address spaces, see the
section "Bank-Switched
Memory” in this chapter and the
sections “Other Uses of |/O
Memory Space” and “Expansion
ROM Space” in Chapter 6.

For details of the built-in 1/O
feature, refer to the descriptions
in Chapters 2 and 3.

For information about /O
operations with peripheral cards,
refer to Chapter 6.

The Apple Ile’s microprocessor can address 65,536 (64K) locations
in memory. All of the Apple Ile’s RAM, ROM, and I/O devices are
allocated locations in this 64K address range. Because each device
or function requires a certain block of memory, there are more
devices and functions than there are legal addresses, which means
that the legal addresses must be shared. This sharing is
accomplished through a technique called bank-switching, which is
explained under the “Bank-Switched Memory” and “Auxiliary
Memory and Firmware” sections in this chapter.

All input and output in the Apple Ile is memory mapped. This
means that all devices connected to the Apple Ile appear to be a set
of memory locations to the computer. In this chapter, the I/O
memory spaces are described simply as blocks of memory.

Programmers often refer to the Apple Ile’s memory in 256-byte
blocks called pages. One reason for this is that a one-byte address
counter or index register can specify one of 256 different locations.
Thus, page 0 consists of memory locations from 0 to 255
(hexadecimal $00 to $FF), inclusive; page 1 consists of locations
256 to 511 (hexadecimal $0100 to $01FF). Note that the page
number is the high-order part of the hexadecimal address. Don’t
confuse this kind of page with the display buffers in the Apple Ile,
which are sometimes referred to as Page 1 and Page 2.

Main memory map

The map of the main memory address space in Figure 4-1 shows the
functions of the major areas of memory. For more details on the
1/O space from 48K to 52K ($C000 through $CFFP), refer to
Chapter 2 and Chapter 6; the bank-switched memory in the
memory space from 52K to 64K ($D000 through $FFFF) is described
in the section “Bank-Switched Memory” later in this chapter.

74 Chapter 4: Memory Organization

FFFF
Bank-
ROM Switched
RAM
D000
CFFF
C000 /0
BFFF
8000
7FFF
Main
RAM
4000
3FFF
0000
Figure 4-1

System memory map

Main memory map 75

RAM memory allocation

As Figure 4-1 shows, the largest portion of the Apple Ile’s memory
space is allocated to programmable storage (RAM). Figure 4-2
shows the areas allocated to RAM. The main RAM memory extends
from location 0 to location 49151 (hex $BFFF), and occupies
pages 0 through 191 (hexadecimal $BF). There is also RAM storage
in the bank-switched space from 53248 to 65535 (hexadecimal
$DO000 to $FFFF), described in the section “Bank-Switched
Memory” later in this chapter, and auxiliary RAM, described in the
section “Auxiliary Memory and Firmware” later in this chapter.

BFFF
8000
TFFF
6000
5FFF
Page 2
4000 High-Resolution
Graphics
SFFF Display Buffers
Page 1
2000
1FFF
Page 2 | Text and Low-Resolution
Page 1 | Graphics Display Buffers
o ~————— Reserved Pages
Figure 4-2

RAM dallocation map

76 Chapter 4: Memory Organization

Important

Reserved memory pages

Most of the Apple Ile’s RAM is available for storing your programs
and data. However, a few RAM pages are reserved for the use of the
Monitor firmware and the BASIC interpreters. The reserved pages
are described in the following sections.

The system does not prevent your using these pages. but if you
do use them, you must be careful not fo disturb the system
data they contain, or you will cause the system to malfunction.

Page zero

Several of the 65C02 microprocessor’s addressing modes require
the use of addresses in page zero, also called zero page. The
Monitor, the BASIC interpreters, DOS 3.3, and ProDOS all make
extensive use of page zero.

To use indirect addressing in your assembly-language programs,
you must store base addresses in page zero. At the same time, you
must avoid interfering with the other programs that use page
zero—the Monitor, the BASIC interpreters, and the disk operating
systems. One way to avoid conflicts is to use only those page-zero
locations not already used by other programs. Tables 4-1 through
4-5 show the locations in page zero used by the Monitor, Applesoft
BASIC, Integer BASIC, DOS 3.3, and ProDOS.

As you can see from the tables, page zero is pretty well used up,
except for a few bytes here and there. It's hard to find more than
one or two bytes that aren’t used by BASIC, ProDOS, the Monitor,
or DOS. Rather than trying to squeeze your data into an unused
corner, you may prefer a safer alternative: save the contents of part
of page zero, use that part, then restore the previous contents
before you pass control to another program.

RAM memory allocation 77

For more information about links,

see the section "Changing the
Standard 1/O Links” in
Chapter 6.

See Chapter 6 for information
on the memory locations that

are reserved for peripheral cards.

The 65C02 stack

The 65C02 microprocessor uses page 1 as the stack—the place
where subroutine return addresses are stored—in last-in, first-out
sequence. Many programs also use the stack for temporary storage
of the registers (via push and pull operations). You can do the
same, but you should use it sparingly. The stack pointer is eight bits
long, so the stack can hold only 256 bytes of information at a time.
When you store the 257th byte in the stack, the stack pointer repeats
itself, or wraps around, so that the new byte replaces the first byte
stored, which is now lost. This writing over old data is called stack
overflow, and when it happens, the program continues to run
normally until the lost information is needed, whereupon the
program terminates catastrophically.

The input buffer

The GETLN input routine, which is used by the Monitor and the
BASIC interpreters, uses page 2 as its keyboard-input buffer. The
size of this buffer sets the maximum size of input strings. (Applesoft
uses only the first 237 bytes, although it permits you to type in 256
characters.) If you know that you won't be typing any long input
strings, you can store temporary data at the upper end of page 2.

Link-address storage

The Monitor, ProDOS, and DOS 3.3 all use the upper part of page 3
for link addresses or vectors.

BASIC programs sometimes need short machine-language
routines. These routines are usually stored in the lower part of
page 3.

The display buffers

The primary text and low-resolution-graphics display buffer
occupies memory pages 4 through 7 (locations 1024 through 2047,
hexadecimal $0400 through $07FF). This entire 1024-byte area is
called text Page 1, and it is not usable for program and data
storage. There are 64 locations in this area that are not displayed on
the screen; these locations are reserved for use by the peripheral
cards.

78 Chapter 4: Memory Organization

For more information about the
display buffers, see the section
“Video Display Pages” in
Chapter 2.

Text Page 2, the alternate text and low-resolution-graphics display
buffer, occupies memory pages 8 through 11 (locations 2048
through 3071, hexadecimal $0800 through $0BFF). Most programs
do not use Page 2 for displays, so they can use this area for program
or data storage.

The primary high-resolution-graphics display buffer, called high-
resolution Page 1, occupies memory pages 32 through 63
(locations 8192 through 16383, hexadecimal $2000 through $3FFF).
If your program doesn’t use high-resolution graphics, this area is
usable for programs or data.

High-resolution Page 2 occupies memory pages 64 through 95
(locations 16384 through 24575, hexadecimal $4000 through
$SFFF). Most programs use this area for program or data storage.

The primary double high-resolution-graphics display buffer, called
double high-resolution Page 1, occupies memory pages 32 through
63 (locations 8192 through 16383, hexadecimal $2000 through
$3FFF) in both main and auxiliary memory. If your program
doesn’t use high-resolution or double high-resolution graphics,
this area of main memory is usable for programs or data.

Table 4-1
Monitor zero-page use

Low nibble of address
High nibble

of address $0 $1 $2 $3 $4 $5 $6 §7 $8 $9 SA $B $C $D SE SF

$00

$10 ot
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$BO
$CO
$DO
$EO
$FO

* Byte used in original Apple Ile ROMs, now free

RAM memory allocation 79

Applesoft zero-page use

Table 4-2

Low nibble of address
$0 $1 $2 $3 84 $5 86 $7 $8 $9 $A $B $C $D $SE SF

High nibble
of address

Integer BASIC zero-page use

Table 4-3

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$BO
$CO
$DO
$EO
$F0

Low nibble of address
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D SE SF

High nibble
of address

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$BO
$CO
$DO
$EO0
$FO

Chapter 4: Memory Organization

80

Table 4-4
DOS 3.3 zero-page use

Low nibble of address
High nibble

of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F

$00

$10

$20 e o e o o o o o
$30 e o o o o e o
$40 e o o o o o o o o e o o o
$50

$60 e o o o .
$70 .

. $80

$90

$A0 .
$BO .

$CO e o o o

$DO °

$EO

$FO

Table 4-5
ProDOS MLI and disk-driver zero-page use

Low nibble of address
High nibble

of address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $SA $B $C $D SE SF

$00 o o

$10

$20

$30 e o o o o o
$40 e o o o o o o o o o o o o o o
$50

$60

$70

$80

$90

$A0

$BO

$CO

$DO

$EO0

$F0

RAM memory allocation 81

82

Bank-switched memory

The memory address space from 52K to 64K (hexadecimal $D000
through $FFFF) is doubly allocated: it is used for both ROM and
RAM. The 12K bytes of ROM (read-only memory) in this address
space contain the Monitor and the Applesoft BASIC interpreter.
Alternatively, there are 16K bytes of RAM in this space. The RAM is
normally used for storing either the Integer BASIC interpreter or
part of the Pascal Operating System (purchased separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: the Apple Ile is able
to run software written for the Apple II and Apple II Plus because it
uses this part of memory in the same way they do. It's convenient to
have the Applesoft interpreter in ROM, but the Apple Ile, like an
Apple II with a language card, is also able to use that address space
for other things when Applesoft is not needed.

You may also be wondering how 16K bytes of RAM are mapped into
only 12K bytes of address space. The usual answer is that it's done
with mirrors, and that isn’t a bad analogy: the 4K-byte address
space from 52K to 56K (hexadecimal $D000 through $DFFF) is used
twice.

Switching different blocks of memory into the same address space is
called bank switching. There are actually two examples of bank
switching going on here: first, the entire address space from 52K to
64K ($D000 through $FFFF) is switched between ROM and RAM,
and second, the address space from 52K to 56K ($D000 to $DFFF) is
switched between two different blocks of RAM.

FFFF
RAM
E000 ROM
D
i RAM RAM
D000
Figure 4-3

Bank-switched memory map

Chapter 4;: Memory Organization

Warning

Setting bank switches

You switch banks of memory in the same way you switch other
functions in the Apple Ile: by using soft switches. Read operations
to these soft switches do three things: select either RAM or ROM in
this memory space; enable or inhibit writing to the RAM; and select
the first or second 4K-byte bank of RAM in the address space $D000
to $DFFF.

Do not use these switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 4-6 shows the addresses of the soft switches for enabling all
combinations of reading and writing in this memory space. All of
the hexadecimal values of the addresses are of the form $C08x.
Notice that several addresses perform the same function: this is
because the functions are activated by single address bits. For
example, any address of the form $C08x with a 1 in the low-order
bit enables the RAM for writing. Similarly, bit 3 of the address
selects which 4K block of RAM to use for the address space $D000~
$DFFF; if bit 3 is 0, the first bank of RAM is used, and if bit 3 is 1,
the second bank is used.

When RAM is not enabled for reading, the ROM in this address
space is enabled. Even when RAM is not enabled for reading, it can
still be written to if it is write-enabled. :

When you turn power on or reset the Apple Ile, it initializes the bank
switches for reading the ROM and writing the RAM, using the
second bank of RAM. Note that this is different from the reset on the
Apple II Plus, which didn't affect the bank-switched memory (the
language card). On the Apple Ile, you can't use the reset vector to
return control to a program in bank-switched memory, as you could
on the Apple II Plus.

% Reset with Integer BASIC: When you are using Integer BASIC
on the Apple Ile, reset works correctly, restarting BASIC with
your program intact. This happens because the reset vector
transfers control to DOS, and DOS resets the switches for the
current version of BASIC.

Bank-switched memory 83

84

Table 4-6
Bank select switches

Name Action Hex Function
R $C080 Read RAM; no write; use
$D000 bank 2.
RR $C081 Read ROM; write RAM; use
$D000 bank 2.
R $C082 Read ROM,; no write; use
$D000 bank 2.
RR $C083 Read and write RAM; use
$D000 bank 2.
R $C088 Read RAM; no write; use
$D000 bank 1.
RR $C089 Read ROM,; write RAM; use
$D000 bank 1.
R $CO8A Read ROM; no write; use
$D000 bank 1.
RR $CO8B Read and write RAM; use
$D000 bank 1.
RDBNK2 R7 $co11 Read whether $D000
bank 2 (1) or bank 1 (0).
RDLCRAM R7 $C012 Reading RAM (1) or ROM (0).
ALTZP W $C008 Off: use main bank, page 0
and page 1.
ALTZP w $C009 On: use auxiliary bank, page 0
and page 1.
RDALTZP R7 $C016 Read whether auxiliary (1) or

main (0) bank.

Note: R means read the location, W means write anything to the location,
R/W means read or write, and R7 means read the location and then check

bit 7.

% Reading and writing to RAM banks: You can't read one RAM
bank and write to the other; if you select either RAM bank for
reading, you get that one for writing as well.

Chapter 4: Memory Organization

AD
AD
A9
85
A9
85
20

AD
20

AD
A9
E6
20

AD
E6
A9
20

AD
AD
E6
E6
A9
20

83
83
DO
01
FF
02
97

8B
97

83
80
10
58

80
10
01
58

8B
8B
OE
10
08

58

co
co

c9

co
Cc9

Cco

Cc9

Cco

Cc9

Cco
Cco

c9

LDA
LDA
LDA
STA
LDA
STA
JSR

LDA
JSR

LDA
LDA
INC
JSR

LDA
INC
LDA
JSR

LDA
LDA
INC
INC
LDA
JSR

% Reading RAM and ROM: You can't read from ROM in part of
the bank-switched memory and read from RAM in the rest:
specifically, you can’t read the Monitor in ROM while reading
bank-switched RAM. If you want to use the Monitor firmware
with a program in bank-switched RAM, copy the Monitor from
ROM (locations $F800 through $FFCB) into bank-switched
RAM. You can't do this from Pascal or ProDOS.

To see how to use these switches, look at the following section of an
assembly-language program:

$C083 *SELECT 2ND 4K BANK & READ/WRITE
$C083 *BY TWO CONSECUTIVE READS

#3$DO *SET UP...

BEGIN *...NEW,..

#SFF *...MAIN-MEMORY...

END *...POINTERS...

RAMTST *.,..FOR 12K BANK

$CO8B *SELECT 1ST 4K BANK

RAMTST *USE ABOVE POINTERS

$C088 *SELECT 1ST BANK & WRITE PROTECT
#$80

TSTNUM

WPTSINIT

$C080 *SELECT 2ND BANK & WRITE PROTECT
TSTNUM

#PAT12K

WPTSINIT

$CO08B *SELECT 1ST BANK & READ/WRITE
$C08B *BY TWO CONSECUTIVE READS

RWMODE *FLAG RAM IN READ/WRITE

TSTNUM ‘

#PAT4K

WPTSINIT

The LDA instruction, which performs a read operation to the
specified memory location, is used for setting the soft switches. The
unusual sequence of two consecutive LDA instructions performs the
two consecutive reads that write-enable this area of RAM; in this
case, the data that are read are not used.

Bank-switched memory 85

Reading bank switches

You can read which language card bank is currently switched in by
reading the soft switch at $C011. You can find out whether the
language card or ROM is switched in by reading $C012. The only
way that you can find out whether the language card RAM is write-
enabled or not is by trying to write some data to the card’s RAM
space.

Auxiliary memory and firmware

By installing an optional card in the auxiliary slot, you can add
more memory to the Apple Ile. One such card is the Apple Ile 80-
Column Text Card, which has 1K bytes of additional RAM for
expanding the text display from 40 columns to 80 columns.

Another 80-column text card, the Apple Ile Extended 80-Column
Text Card, has 64K of additional RAM. A 1K-byte area of this
memory serves the same purpose as the memory on the 80-Column
Text Card: expanding the text display to 80 columns. The other 63K
bytes can be used as auxiliary program and data storage. If you use
only 40-column displays, the entire 64K bytes is available for
programs and data. The Extended 80-Column Text Card is installed
in the extended keyboard Ile and shipped with later models of the
enhanced Ile.

Warning Do not attempt to use the auxiliary memory from a BASIC
program. The BASIC Interpreter uses several areas in main RAM,
including the stack and the zero page. If you switch to
auxiliary memory in these areas, the BASIC interpreter fails and
you must reset the system and start over.

As you can see by studying the memory map in Figure 4-4, the
auxiliary memory is broken into two large sections and one small
one. The largest section is switched into the memory address space
from 512 to 49151 ($0200 through $BFFF). This space includes the
display buffer pages: as described in the section “Text Modes” in
Chapter 2, space in auxiliary memory is used for one half of the 80-
column text display. You can switch to the auxiliary memory for this
entire memory space, or you can switch just the display pages: see
the next section, “Memory Mode Switching.”

86 Chapter 4: Memory Organization

% Soft switches: If the only reason you are using auxiliary memory
is for the 80-column display, note that you can store into the
display page in auxiliary memory by using the 80STORE and
PAGE2 soft switches described in the section “Display Mode
Switching” in Chapter 2.

The other large section of auxiliary memory is switched into the
memory address space from 52K to 64K ($D000 through $FFFF).
This memory space and the switches that control it are described
earlier in this chapter in the section “Bank-Switched Memory.” If
you use the auxiliary RAM in this space, the soft switches have the
same effect on the auxiliary RAM that they do on the main RAM: the
bank switching is independent of the auxiliary-RAM switching.

FFFF
Main Auxiliary
Bank- Bank-
Switched Switched
RAM RAM

ROM

D000
CFFF
co00 10
BFFF

Main

8000 Auxiliary
TFFF RAM

6000
5FFF

4000 High-Resolution
3FFF Graphics Display Buffers

2000
IFFF

. Text and Low-Resolution | |
Graphics Display Buffers

0000 Stack and Zero Page —

Figure 4-4
Memory map with auxilliary memory

Auxiliary memory and firmware 87

88

Warning

 Bank switches: Note that the soft switches for the bank-switched
memory, described in the previous section, do not change
when you switch to auxiliary RAM. In particular, if ROM is
enabled in the bank-switched memory space before you switch
to auxiliary memory, the ROM will still be enabled after you
switch. Any time you switch the bank-switched section of
auxiliary memory in and out, you must also make sure that the
bank switches are set properly.

When you switch in the auxiliary RAM in the bank-switched space,
you also switch the first two pages, from 0 to 511 ($0000 through
$01FF). This part of memory contains page zero, which is used for
important data and base addresses, and page one, which is the
65C02 stack. The stack and zero page are switched this way so that
system software running in the bank-switched memory space can
maintain its own stack and zero page while it manipulates the 48K
address space (from $0200 to $BFFF) in either main memory or
auxiliary memory.

Memory mode switching

Switching the 48K section of memor}? is performed by two soft
switches: the switch named RAMRD selects main or auxiliary
memory for reading, and the one named RAMWRT selects main or
auxiliary memory for writing. As shown in Table 4-7, each switch
has a pair of memory locations dedicated to it, one to select main
memory, and the other to select auxiliary memory. Enabling the
read and write functions independently makes it possible for a
program whose instructions are being fetched from one memory
space to store data into the other memory space.

Do not use these switches without careful planning. Careless
switching between main and auxiliary memories is almost
certain to have catastrophic effects on the operation of the
Apple lle. For example, if you switch to auxiliary memory with
no card In the slot, the program that is running will stop and
you will have to reset the Apple lle and start over.

Chapter 4: Memory Organization

The next section, “Auxiliary-
Memory Subroutines,” describes
firmware that you can call to
help you switch between main
and auxiliary memory.

Writing to the soft switch at location $C003 turns RAMRD on and
enables auxiliary memory for reading; writing to location $C002
turns RAMRD off and enables main memory for reading. Writing to
the soft switch at location $C005 turns RAMWRT on and enables the
auxiliary memory for writing; writing to location $C004 turns
RAMWRT off and enables main memory for writing. By setting
these switches independently, you can use any of the four
combinations of reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and high-
resolution graphics Page 1 can be used as part of the address space
from $0200 to $BFFF by using RAMRD and RAMWRT as described
above. These areas in auxiliary RAM can also be controlled
separately by using the switches described in the section “Display
Mode Switching” in Chapter 2. Those switches are named
80STORE, PAGE2, and HIRES.

As shown in Table 4-7, the 80STORE switch functions as an enabling
switch: with it on, the PAGE2 switch selects main memory or
auxiliary memory. With the HIRES switch off, the memory space
switched by PAGE2 is the text Page 1, from $0400 to $07FF; with
HIRES on, PAGE2 switches both text Page 1 and high-resolution
graphics Page 1, from $2000 to $3FFF.

If you are using both the auxiliary-RAM control switches and the
auxiliary-display-page control switches, the display-page control
switches take priority: if 80STORE is off, RAMRD and RAMWRT work
for the entire memory space from $0200 to $BFFF, but if 80STORE is
on, RAMRD and RAMWRT have no effect on the display page.
Specifically, if B0STORE is on and HIRES is off, PAGE2 controls text
Page 1 regardless of the settings of RAMRD and RAMWRT. Likewise,
if 80STORE and HIRES are both on, PAGE2 controls both text

Page 1 and high-resolution graphics Page 1, again regardless of
RAMRD and RAMWRT.

A single soft switch named ALTZP (for alternate zero page) switches
the bank-switched memory and the associated stack and zero page
area between main and auxiliary memory. As shown in Table 4-7,
writing to location $C009 turns ALTZP on and selects auxiliary-
memory stack and zero page; writing to the soft switch at location
$C008 turns ALTZP off and selects main-memory stack and zero
page for both reading and writing.

Auxiliary memory and firmware 89

Table 4-7

Auxiliary-memory select switches

Location
Name Function Hex Decimal Notes
RAMRD Read auxiliary memory $C003 49155 -16381 Write
Read main memory $C002 49154 -16382 Write
Read RAMRD switch $C013 49171 -16365 Read
RAMWRT Write auxiliary memory $C005 49157 -16379 Write
Write main memory $C004 49156 -16380 Write
Read RAMWRT switch $C014 49172 -16354 Read
80STORE On: access display page $C001 49153 -16383 Write
Off: use RAMRD, RAMWRT $C000 49152 —16384 Write
Read 80STORE switch $C018 49176 -16360 Read
PAGE2 Page 2 on (aux. memory) $C055 49237 -16299 *
Page 2 off (main memory) $C054 49236 -16300 $
Read PAGE2 switch $CO1C 49180 —16356 Read
HIRES On: access high-res pages $C057 49239 -16297 +
Off: use RAMRD, RAMWRT $C056 49238 -16298 t
Read HIRES switch $CO1ID 49181 -16355 Read
ALTZP Aux. stack & zero page $C009 49161 -16373 Write
Main stack & zero page $C008 49160 -16374 Write
Read ALTZP switch $C016 49174 -16352 Read

* When 80STORE is on, the PAGE2 switch selects main or auxiliary display memory.
t When 80STORE is on, the HIRES switch enables you to use the PAGE2 switch to switch between the high-
resolution Page 1 area in main memory or auxiliary memory.

When these switches are on,
auxiliary memory is being used;
when they are off, main
memory is being used.

There are three more locations associated with the auxiliary-
memory switches. The high-order bits of the bytes you read at these
locations tell you the settings of the three soft switches described
above. The byte you read at location $C013 has its high bit set to 1 if
RAMRD is on (auxiliary memory is read-enabled), or 0 if RAMRD is
off (the 48K block of main memory is read-enabled). The byte at
location $C014 has its high bit set to 1 if RAMWRT is on (auxiliary
memory is write-enabled), or 0 if RAMWRT is off (the 48K block of
main memory is write-enabled). The byte at location $C016 has its
high bit set to 1 if ALTZP is on (the bank-switched area, stack, and
zero page in the auxiliary memory are selected), or 0 if ALTZP is off
(these areas in main memory are selected).

90 Chapter 4: Memory Organization

Important

< Sharing memory: In order to have enough memory locations
for all of the soft switches and remain compatible with the
Apple II and Apple II Plus, the soft switches listed in Table 4-7
share their memory locations with the keyboard functions listed
in Table 2-1. The operations—read or write—shown in
Table 4-7 for controlling the auxiliary memory are just the ones
that are not used for reading the keyboard and clearing the
strobe.

Auxiliary-memory subroutines

If you want to write assembly-language programs that use auxiliary
memory but you don’t want to manage the auxiliary memory
yourself, you can use the built-in auxiliary-memory subroutines.
These subroutines make it possible to use the auxiliary memory
without having to manipulate the soft switches described in the
previous section.

The subroutines described below make it easier to use auxiliary
memoty, but they do not protect you from errors. You still have
to plan your use of auxiliary memory to avoid catastrophic
effects on your program.

You use these built-in subroutines the same way you use the I/O
subroutines described in Chapter 3: by making subroutine calls to
their starting locations. Those locations are shown in Table 4-8.

Table 4-8

48K RAM transfer routines

Name Action Hex Function

AUXMOVE JSR $C311 Moves data blocks between

main and auxiliary
48K memory

XFER JMP $C314 Transfers program control
between main and auxiliary
48K memory

Auxiliary memory and firmware 91

2

Warning

Moving data to auxiliary memory

In your assembly-language programs, you can use the built-in
subroutine named AUXMOVE to copy blocks of data from main
memory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data
addresses into byte pairs in page zero and set the carry bit to select
the direction of the move—main to auxiliary or auxiliary to main.

Don't try to use AUXMOVE to copy data in page zero or page
one (the 65C02 stack) or in the bank-switched memory ($D00C-
SFFFF). AUXMOVE uses page zero all during the copy, so it
can’t handle moves in the memory space switched by ALTZP.

The pairs of bytes you use for passing addresses to this subroutine
are called Al, A2, and A4, and they are used for parameter passing
by several of the Apple Ile’s built-in routines. The addresses of
these byte pairs are shown in Table 4-9.

Table 4-9
Parameters for AUXMOVE routine

Name Location Parameter passed

Carry 1 = Move from main to auxiliary memory
0 = Move from auxiliary to main memory
AlL $3C Source starting address, low-order byte
AlH $3D Source starting address, high-order byte
A2L $3E Source ending address, low-order byte
A2H $3F Source ending address, high-order byte
A4L $42 Destination starting address, low-order byte
A4H $43 Destination starting address, high-order byte

Note: The X, Y, and A registers are preserved by AUXMOVE.

Put the addresses of the first and last bytes of the block of memory
you want to copy into Al and A2. Put the starting address of the
block of memory you want to copy the data to into A4.

The AUXMOVE routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit; to copy data from auxiliary memory to
main memory, clear the carry bit.

When you make the subroutine call to AUXMOVE, the subroutine
copies the block of data as specified by the A byte pairs and the
carry bit. When it is finished, the accumulator and the X and Y
registers are just as they were when you called AUXMOVE.

Chapter 4: Memory Organization

Warning

Transferring control to auxiliary memory

You can use the built-in routine named XFER to transfer control to
and from program segments in auxiliary memory. You must set up
three parameters before using XFER: the address of the routine you
are transferring to, the direction of the transfer (main to auxiliary or
auxiliary to main), and which page zero and stack you want to use.

Table 4-10
Parameters for XFER routine
Name
or location Parameter passed
Carry 1 = Transfer from main to auxiliary memory
0 = Transfer from auxiliary to main memory
Overflow 1 = Use page zero and stack in auxiliary memory
0 = Use page zero and stack in main memory
$03ED Program starting address, low-order byte
$03EE Program starting address, high-order byte

Note: The X, Y, and A parameters are preserved by XFER.

Put the transfer address into the two bytes at locations $03ED and
$03EE, with the low-order byte first, as usual. The direction of the
transfer is controlled by the carry bit: set the carry bit to transfer to
a program in auxiliary memory; clear the carry bit to transfer to a
program in main memory. Use the overflow bit to select which page
zero and stack you want to use: clear the overflow bit to use the main
memory; set the overflow bit to use the auxiliary memory.

After you have set up the parameters, pass control to the XFER
routine by a jump instruction, rather than a subroutine call. XFER
saves the accumulator and the transfer address on the current stack,
then sets up the soft switches for the parameters you have selected
and jumps to the new program.

It Is the programmer’s responsibility to save the current stack
pointer at $0100 in auxiliary memory and the alternate stack
pointer at $0101 in auxiliary memory before calling XFER and to
restore them after regaining control. Failure to do so will cause
program errors.

Auxiliary memory and firmware 93

For information about the I/O
links, see the section *Changing
the Standard 1/O Links® In
Chapter 6.

For more information about
peripheral-card ROM, see the
section “Peripheral-Card ROM
Space” in Chapter 6.

The reset routine

To put the Apple Ile into a known state when it has just been turned
on or after a program has malfunctioned, there is a procedure
called the reset routine. The reset routine is built into the Apple Ile’s
firn.ware, and it is initiated any time you turn power on or press
Reset while holding down Control. The reset routine puts the

Apple Ile into its normal operating mode and restarts the resident
program.

When you initiate a reset, hardware in the Apple Ile sets the
memory-controlling soft switches to normal: main board RAM and
ROM are enabled, and, if there is an 80-column text card in the
auxiliary slot, expansion slot 3 is allocated to the built-in 80-
column firmware. Auxiliary RAM is disabled and the bank-switched
memory space is set up to read from ROM and write to RAM, using
the second bank at $D000.

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
window equal to the full 40-column display, puts the cursor at the
bottom of the screen, and sets the display format to normal.

The reset routine sets the keyboard and display as the standard input
and output devices by loading the standard I/O links. It turns
annunciators 0 and 1 off and annunciators 2 and 3 on, clears the
keyboard strobe, turns off any active peripheral-card ROM, and
outputs a bell (tone).

The Apple Ile has three types of reset: power-on reset, also called
cold-start reset; warm-start reset; and forced cold-start reset.
The procedure described above is the same for any type of reset.
What happens next depends on the reset vector. The reset routine
checks the reset vector to determine whether it is valid or not, as
described later in this chapter in the section “The Reset Vector.” If
the reset was caused by turning the power on, the vector will not be
valid, and the reset routine will perform the cold-start procedure. If
the vector is valid, the routine will perform the warm-start
procedure.

94 Chapter 4: Memory Organization

For more information about
ProDOS and the startup
procedure, see the ProDOS
Technical Reference Manual.

Important

The cold-start procedure

If the reset vector is not valid, either the Apple Ile has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
“Apple //e” (“Apple] [” on an original Ile) at the top of the
display. It loads the reset vector and the validity-check byte as
described below, then starts checking the expansion slots to see if
there is a disk drive controller card in one of them, starting with
slot 7 and working down.

If the reset routine finds a controller card, it initiates the startup
(bootstrap) routine that resides in the controller card’s firmware.
The startup routine then loads DOS or ProDOS from the disk in
drive 1. When the operating system has been loaded, it displays
other messages on the screen. If there is no disk in the disk drive,
the drive motor just keeps spinning until you press Control-Reset.

If the reset routine doesn't find a controller card, or if you press
Control-Reset again before the startup procedure has been
completed, the reset routine will continue without using the disk,
and pass control to the built-in Applesoft interpreter.

The warm-start procedure

Whenever you press Control-Reset when the Apple Ile has already
completed a cold-start reset, the reset vector is still valid and it is
not necessary to reinitialize the entire system. The reset routine
simply uses the vector to transfer control to the resident program,
which is normally the built-in Applesoft interpreter. If the resident
program is indeed Applesoft, your Applesoft program and
variables are still intact. If you are using DOS, it is the resident
program and it restarts either Applesoft or Integer BASIC,
whichever you were using when you pressed Control-Reset.

A program in bank-switched RAM cannot use the reset vector
to regain control after a reset, because the Apple lle hardware
enables ROM in the bank-switched memory space. If you are
using Integer BASIC, which Is in the bank-switched RAM, you
are also using DOS, and it is DOS that controls the reset vector
and restarts BASIC.

The reset routine 95

96

Forced cold start

If a program has loaded the reset vector to point to the beginning of
the program, as described in the next section, pressing Control-
Reset causes a warm-start reset that uses the vector to transfer
control to that program. If you want to stop such a program without
turning the power off and on, you can force a cold-start reset by
holding down Open Apple and Control, then pressing and
releasing Reset.

% Unconditional restart: When you want to stop a program
unconditionally—for example, to start up the Apple Ile with
some other program—you should use the forced cold-start
reset, Open Apple-Control-Reset, instead of turning the power
off and on.

Whenever you press Control-Reset, firmware in the Apple Ile always
checks to see whether either Apple key is down. If the Solid Apple
key (or Option key, in the extended keyboard Ile) is down, with or
without the Open Apple key, the firmware performs the self-test
described later in this chapter. If only the Open Apple key is down,
the firmware starts a forced cold-start reset. First, it destroys the
program or data in memory by writing two bytes of arbitrary data
into each page of main RAM. The two bytes that get written over in
page 3 are the ones that contain the reset vector. The reset routine
then performs a normal cold-start reset.

The reset vector

When you reset the Apple Ile, the reset routine transfers control to
the resident program by means of an address stored in page 3 of
main RAM. This address is called a vector because it directs
program control to a specified destination. There are several other
vector addresses stored in page 3, as shown in Table 4-11,
including the interrupt vectors described in the section “Interrupts
on the Enhanced Apple Ile” in Chapter 6, and the ProDOS and
DOS vectors described in the ProDOS Technical Reference
Manual and the Apple II DOS Programmer’s Manual.

Chapter 4: Memory Organization

The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector
address at locations 1010 and 1011 (hexadecimal $03F2 and $03F3).
It then stores a validity-check byte, also called the power-up byte, at
location 1012 (hexadecimal $03F4). The validity-check byte is
computed by performing an exclusive-OR of the second byte of the
vector with the constant 165 (hexadecimal $A5). Each time you
reset the Apple Ile, the reset routine uses this byte to determine
whether the reset vector is still valid.

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For

this to work, you must also change the validity-check byte to the
exclusive-OR of the high-order byte of your new reset vector with
the constant 165 ($A5). If you fail to do this, then the next time you
reset the Apple Ile the reset routine will determine that the reset
vector is invalid and perform a cold-start reset, eventually
transferring control to the disk startup routine or to Applesoft.

The reset routine has a subroutine that generates the validity-check
byte for the current reset vector. You can use this subroutine by
doing a subroutine call to location -1169 (hexadecimal $FB6F).
When your program finishes, it can return the Apple Ile to normal
operation by restoring the original reset vector and again calling
the subroutine to fix up the validity-check byte.

Table 4-11

Page 3 vectors

Vector

address Vector function

$3F0$3F1 Address of the subroutine that handles BRK
requests (normally $59, $FA)

$3F2$3F3 Reset vector (see text)

$3F4 Power-up byte (see text)

$3F5$3F6$3F7 Jump instruction to the subroutine that handles
Applesoft & commands (normally $4C, $58,
$FF)

$3F8$3FO$3FA Jump instruction to the subroutine that handles
user Control-Y commands

$3FB$3FC$3FD Jump instruction to the subroutine that handles
nonmaskable interrupts

$3FE$3FF Interrupt vector (address of the subroutine that

handles interrupt requests

The reset routine 97

98

Warning

Automatic self-test

If you reset the Apple Ile by holding down Solid Apple and Control
while pressing and releasing Reset, the reset routine will start
running the built-in self-test. Successfully running this test assures
you that the Apple Ile is operational.

The self-test routine tests the Apple lle’s programmable memory
by writing and then reading it. All programs and data in
programmable memory when you run the self-test are
destroyed.

The self-test takes several seconds to run. The screen will display
some patterns in low-resolution mode that will change rapidly just
before the self-test finishes. If the test finishes normally, the
Apple Ile displays System OK and waits for you to restart the
system.

If you have been running a program, some soft switches might be on
when you run the self-test. If this happens, the self-test will display a
message such as

I0U FLAG ES: 1

Turn the power off for several seconds, then turn it back on and
run the self-test again. If it still fails, there is really something
wrong; to get it corrected, contact your authorized Apple dealer for
service.

Chapter 4: Memory Organization

Chapter 5

Using the
Monitor

99

The starting addresses for all of
the standard subroutines are
listed in Appendix B.

The System Monitor is a set of subroutines in the Apple Ile
firmware. The Monitor provides a standard interface to the built-in
I/O devices described in Chapter 2. The I/O subroutines described
in Chapter 3 are part of the System Monitor.

ProDOS, DOS 3.3, and the BASIC interpreters use these
subroutines by direct calls to their starting locations, as described
for the 1/O subroutines in Chapter 3.

If you wish, you can call the standard subroutines from your
programs in the same fashion.

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor to

D look at one or more memory locations
O change the contents of any location

O write programs in machine language to be executed directly by
the Apple Ile’s microprocessor

O

save blocks of data and programs onto cassette tape and read
them back in again

move and compare blocks of memory
search for data bytes and ASCII characters in memory

invoke other programs from the Monitor

O 0o Do

invoke the Mini-Assembler

Invoking the Monitor

The System Monitor starts at memory location $FF69 (decimal
65385 or -15). To invoke the Monitor, you make a CALL statement
to this location from the keyboard or from a BASIC program. When
the Monitor is running, its prompt character, an asterisk (*),
appears on the left side of the display screen, followed by a blinking
cursor.

To use the Monitor, you type commands at the keyboard. When you
have finished using the Monitor, you return to the BASIC language
you were previously using by pressing Control-Reset, by pressing
Control-C then Return, or by typing 3D0G (3D-zero-G), which
executes the resident program—usually Applesoft—whose address.
is stored in a jump instruction at location $3DO.

100 Chapter 5: Using the Monitor

See “Summary of Monitor
Commands” at the end of this
chapter.

Syntax of Monitor commands

To give a command to the Monitor, you type a line on the
keyboard, then press Return. The Monitor accepts the line using the
standard I/O subroutine GETLN, described in Chapter 3. A
Monitor command can be up to 255 character in length, ending
with a carriage return.

A Monitor command can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation. Hexadecimal
notation uses the ten decimal digits (0-9) and the first six letters
(A-F) to represent the sixteen values from 0 to 15. A pair of
hexadecimal digits represent values from 0 to 255, corresponding
to a byte; and a group of four hexadecimal digits can represent
values from 0 to 65,536, corresponding to a word. Any address in
the Apple Ile can be represented by four hexadecimal digits.

When the command you type calls for an address, the Monitor
accepts any group of hexadecimal digits. If there are fewer than four
digits in the group, it adds leading zeros; if there are more than four
hexadecimal digits, the Monitor uses only the last four digits. It
follows a similar procedure when the command syntax calls for two-
digit data values.)

Each command you type consists of one command character,
usually the first letter of the command name. When the command is
a letter, it can be either uppercase or lowercase. The Monitor
recognizes 23 different command characters. Some of them are
punctuation marks, some are letters, and some are control
characters.

% Note: Although the Monitor recognizes and interprets control
characters typed on an input line, they do not appear on the
screen.

This chapter contains many examples of the use of Monitor
commands. In the examples, the commands and values you type
are shown in a normal typeface and the responses of the Monitor
are in a computer typeface. Of course, when you perform the
examples, all of the characters that appear on the display screen
will be in the same typeface. Some of the data values displayed by
your Apple Ile may differ from the values printed in these
examples, because they are variables stored in programmable
memory.

Syntax of monitor commands 101

102

Monitor memory commands

When you use the Monitor to examine and change the contents of
memory, it keeps track of the address of the last location whose
value you inquired about and the address of the location that is next
to have its value changed. These are called the last opened location
and the next changeable location.

Examining memory contents

When you type the address of 2 memory location and press Return,
the Monitor responds with the address you typed, a dash, a space,
and the value stored at that location, like this:

*E000

E000- 20
*33

0033- AA

*

Each time the Monitor displays the value stored at a location, it
saves the address of that location as the last opened location and as
the next changeable location.

Memory dump

When you type a period () followed by an address and then press
Return, the Monitor displays a memory dump: the data values
stored at all the memory locations from the one following the last
opened location to the location whose address you typed following
the period. The Monitor saves the last location displayed as both
the last opened location and the next changeable location. The
amount of data displayed by the Monitor depends on how much
larger than the last opened location the address after the period is;
here are some examples:

*20
0020- 00
*.2B

0021- 28 00 18 OF 0C 00 00
0028- A8 06 DO 07

Chapter 5: Using the Monitor

*300
0300- 99
*.315

0301- B9 00 08 OA OA OA 99
0308- 00 08 C8 DO F4 A6 2B A9
0310- 09 85 27 AD CC 03

*32A

0316- 85 41

0318- 84 40 8A 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20

*

When the Monitor performs a memory dump, it starts at the
location immediately following the last opened location and
displays that address and the data value stored there. It then
displays the values of successive locations up to and including the
location whose address you typed, but only up to eight values on a
line. When it reaches a location whose address is a multiple of
eight—that is, one that ends with an 8 or a 0—it displays that
address as the beginning of a new line, then continues displaying
more values.

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory dump
and sets that location as both the last opened location and the next
changeable location. If the address specified on the input line is less
than the address of the last opened location, the Monitor displays
only the address and value of the location following the last opened
location.

You can combine the two commands, opening a location and
dumping memory, by simply concatenating them: type the first
address, a period, and the second address. This combination of
two addresses separated by a period is called a memory range.

*300.32F

0300- 99 B9 00 08 OA OA OA 99
0308- 00 08 C8 DO F4 A6 2B A9
0310- 09 85 27 AD CC 03 85 41
0318- 84 40 8A 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20 46 03 A5 3D 4D

Monitor memory commands 103

104

*30.40

0030- AA 00 FF AA 05 C2 05 C2
0038- 1B FD DO 03 3C 00 40 00
0040- 30

*E015.E025

E016- 4C ED FD
E018- A9 20 C5 24 BO 0OC A9 8D
E020- A0 07 20 ED FD A9 *

Pressing Return by itself causes the Monitor to display one line of a
memory dump; that is, a memory dump from the location
following the last opened location to the next multiple-of-eight
boundary. The Monitor saves the address of the last location
displayed as the last opened location and the next changeable
location.

*5

0005- 00
*Return

00 00

*Return

0008- 00 00 00 00 00 00 00 0O
*32

0032- FF
*Return

AA 00 C2 05 C2
*Return

0038- 1B FD DO 03 3C 00 3F 00
*

Chapter 5: Using the Monitor

Warning

Changing memory contents

The preceding section showed you how to display the values stored
in the Apple Ile’s memory; this section shows you how to change
those values. You can change any location in RAM—
programmable memory—and you can also change the soft switches
and output devices by changing the locations assigned to them.

Use these commands carefully. If you change the zero-page
locations used by Applesoft, ProDOS, or DOS, you may lose
programs or data stored in memory.

Changing one byte

The previous commands keep track of the next changeable
location; these commands make use of it. In the next example, you
open location 0, then type a colon () followed by a value:

*Q
0000~ 00
*:5F

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining that
location:

*0

0000- S5F

*

You can also combine opening and changing into one operation by
typing an address followed by a colon and a value. In the example,
you type the address again to verify the change:

*302:42
*302
0302- 42

*

When you change the contents of a location, the value that was
contained in that location disappears, never to be seen again. The
new value will remain until you replace it with another value.

Changing memory contents 105

106

Changing consecutive locations

You don't have to type a separate command with an address, a
colon, a value, and Return for each location you want to change.
You can change the values of up to 85 consecutive locations at a
time (or even more, if you omit leading zeros from the values) by
typing only the initial address and colon followed by all the values
separated by spaces, and ending with Return. The Monitor will duly
store the consecutive values in consecutive locations, starting at the
location whose address you typed. After it has processed the string
of values, it takes the location following the last changed location as
the next changeable location. Thus, you can continue changing
consecutive locations without typing an address on the next input
line by typing another colon and more values. In these examples,
you first change some locations, then examine them to verify the
changes:

*300:69 01 20 ED FD 4C 0 3
*300

0300- 69

*Return

01 20 ED FD 4C 00 03
*]10:0123

*4567

*10.17

0010- 00 01 02 03 04 05 06 07

*

ASCIl input mode

The enhanced Apple Ile has an ASCII input mode that lets you enter
ASCII characters just as you can their hexadecimal ASCII
equivalents by preceding the literal character with an apostrophe
(). This means that 'A is the same as $C1 and 'B is the same as $C2
to the Monitor. The ASCII value for any character following an
apostrophe is used by the Monitor.

Chapter 5: Using the Monitor

Important

Original lle

Each character to be placed in memory should be delimited by a
leading apostrophe () and a trailing space. The only exception to
this rule is that the last character in the line is followed with a return
character instead of a space. The following example would enter the
string “Hooray for sushi!” at $0300 in memory.

*300:'“ 'o'o'r'a Iy ' lf o'r''su's |h i

ASCII input mode sets the high bit of the code for a character
that you enter. So ‘A will equal $C1, not $41.

The original Apple lle does not have an ASCII input mode.

Moving data in memory

You can copy a block of data stored in a range of memory locations
from one area in memory to another by using the Monitor's MOVE
command. To move a range of memory, you must tell the Monitor
both where the data is now situated in memory (the source
locations) and where you want the copy to go (the destination
locations). You give this information to the Monitor by means of
three addresses: the address of the first location in the destination
and the addresses of the first and last locations in the source. You
specify the starting and ending addresses of the source range by
separating them with a period. You separate the destination address
from the range addresses with a less-than character (<), which you
may think of as an arrow pointing in the direction of the move.
Finally, you tell the Monitor that this is a MOVE command by
typing the letter M (in either lowercase or uppercase). The format
of the complete MOVE command looks like this:

{destination} < {(start} . {end M

When you type the actual command, the words in braces should be
replaced by hexadecimal addresses, and the braces and spaces
should be omitted.

Here are some examples of Monitor commands, including some
memory moves. First, you examine the values stored in one range
of memory, then store several values in another range of memory;
the actual MOVE commands end with the letter M.

Changing memory contents 107

See the section “Special Tricks
With the Monitor” later in this
chapter for an interesting
application of this feature.

* O.F

0000- S5F 00
0008- 00 00

05 07 00 00 00 00
00 00 00 00 00 00

*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03

0300- A9 8D 20 ED FD A9 45 20

*300.30C
0308- DA FD
*(0<300.30CM
*0.C

0000~ A9 8D
0008- DA FD
*310<8.AM
*310.312
0310- DA FD
*2<7.9M

*0.C

0000- A9 8D
0008- DA FD

*

4C 00 03

20 ED FD A9 45 20
4C 00 03

4Cc

20 DA FD A9 45 20
4C 00 03

The Monitor moves a copy of the data stored in the source range of
locations to the destination locations. The values in the source
range are left undisturbed. The Monitor remembers the last
location in the source range as the last opened location, and the
first location in the source range as the next changeable location. If
the second address in the source range specification is less than the
first, then only one value (that of the first location in the range) will

be moved.

If the destination address of the MOVE command is inside the
source range of addresses, then strange (and sometimes wonderful)
things happen: the locations between the beginning of the source
range and the destination address are treated as a subrange and the
values in this subrange are replicated throughout the source range.

108 Chapter 5: Using the Monitor

See the section "Special Tricks
With the Monitor” later in this
chapter.

Comparing data in memory

You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of memory
from one place to another. In fact, the VERIFY command can be
used immediately after a MOVE command to make sure that the
move was successful.

The VERIFY command, like the MOVE command, needs a range
and a destination. The syntax of the VERIFY command is

{destination} < {star . {end V

The Monitor compares the values in the source locations with the
values in the locations beginning at the destination address. If any
values don’t match, the Monitor displays the address at which the
discrepancy was found and the two values that differ. In the
example, you store data values in the range of locations from 0

to $D, copy them to locations starting at $300 with the MOVE
command, and then compare them using the VERIFY command.
When you use the VERIFY command after you change the value at
location 6 to $E4, it detects the change.

*0:D7 F2 E9 F4 F4 E5 EE AO E2 F9 A0 C3 C4 C5
*300<0.DM

*300<0.DV

*6:E4

*300<0.DV

0006-E4 (EE)

*

If the VERIFY command finds a discrepancy, it displays the address
of the location in the source range whose value differs from its
counterpart in the destination range. If there is no discrepancy,
VERIFY displays nothing. The VERIFY command leaves the values
in both ranges unchanged. The last opened location is the last
location in the source range, and the next changeable location is
the first location in the source range, just as in the MOVE
command. If the ending address of the range is less than the starting
address, the values of only the first locations in the ranges will be
compared. Like the MOVE command, the VERIFY command also
does unusual things if the destination address is within the source
range.

Changing memory contents 109

110

Original lle

Searching for bytes in memory

The SEARCH command lets you search for one or two bytes (either
hexadecimal values or ASCII characters) in a range of memory. You
must type in the ASCII string (or hexadecimal number or numbers)
in reverse of the order that they appear in memory. Think of the
SEARCH command as looking for items in a last-in, first-out queue.

The syntax of the SEARCH command is

{value or ASCIN<{start}.{end} S

If the byte (or two-byte sequence) that you specify is in the specified
memory range, the Monitor will return with a list of the addresses
where that byte (or byte sequence) occurs. If the byte (or byte
sequence) is not in the range, the Monitor just displays the prompt

The following example looks for the character string “LO” in
memory between $0300 and $03FF:

**Q’L<300.3FFS

< High bit set: Remember that ASCII input mode sets the high-
order bit of each character that you enter.

The next example searches for the two-byte sequence $FF11.
*11FF<300.3FFS

You can't search for a two-byte sequence with a high byte of 0. The
Monitor ignores the high byte and searches for the low byte only.
The sequence 00FF is seen by the Monitor SEARCH command as FF.

The Monitor in the original Apple lle does not recognize the
SEARCH command.

Examining and changing registers

The microprocessor’s register contents change continuously
whenever the Apple Ile is running any sort of program, such as the
Monitor. The Monitor lets you see what the register contents were
when you invoked the Monitor or a program that you were
debugging stopped at a break (BRK). The Monitor also lets you set
65C02 register values before you execute a program with the GO
command.

Chapter 5: Using the Monitor

When you call the Monitor, it stores the contents of the
microprocessor’s registers in memory. The registers are stored in
the order A, X, Y, P (processor status register), and S (stack
pointer), starting at location $45 (decimal 69). When you give the
Monitor 2 GO command, the Monitor loads the registers from
these five locations before it executes the first instruction in your
program.

Pressing Control-E and then Return invokes the Monitor’s
EXAMINE command, which displays the stored register values and
sets the location containing the contents of the A register as the next
changeable location. After using the EXAMINE command, you can
change the values in these locations by typing a colon and then
typing the new values separated by spaces. In the following
example, you display the registers, change the first two, and then
display them again to verify the change.

*Control-E

A=0A X=FF Y=D8 P=B0 S=F8
*B0 02

*Control-E

A=B0 X=02 Y=D8 P=B0 S=F8

*

Monitor cassette tape commands

The Apple Ile has two jacks for connecting an audio cassette tape
recorder. With a recorder connected, you can use the Monitor
commands described later in this section to save the contents of a
range of memory onto a standard cassette and recall it for later use.

Saving data on tape

The Monitor’s WRITE command saves the contents of up to 65,536
memory locations on cassette tape. To save a range of memory on
tape, give the Monitor the starting and ending addresses of the
range, followed by the letter W (for WRITE), like this:

{start . {end W

Monitor cassette tape commands 111

112

Don't press Return yet: first, put the tape recorder in record mode
and let the tape run for a second, then press Return. The Monitor
will write a ten-second tone onto the tape and then write the data.
The tone acts as a leader: later, when the Monitor reads the tape,
the leader enables the Monitor to get in step with the signal from the
tape. When the Monitor is finished writing the range you specified,
it will sound a bell (beep) and display a prompt. You should rewind
the tape and label it with the memory range that’s on the tape and
what it’s supposed to be.

Here's a small example you can save and use later to try out the
READ command. Remember that you must start the cassette
recorder in record mode before you press Return after typing the
WRITE command.

*0.FF FF AD 30 C0 88 DO 04 C6 01 FO 08 CA
DO F6 A6 00 4C 02 00 60
*0.14

0000- FF FF AD 30 CO 88 DO 04
0008~ C6 01 FO 08 CA DO F6 A6
0010- 00 4C 02 00 60

*0.14W

*

It takes about 35 seconds total to save the values of 4096 memory
locations preceded by the ten-second leader onto tape. This works
out to an average data transfer rate of about 1350 bits per second.

The WRITE command writes one extra value on the tape after it has
written the values in the memory range. This extra value is the
checksum, which is the eight-bit partial sum of all values in the
range. When the Monitor reads the tape, it uses this value to
determine if the data has been written and read correctly. (See the
next section.)

Chapter 5: Using the Monitor

Reading data from tape

Once you've saved a memory range onto tape with the Monitor’s
WRITE command, you can read that memory range back into the
computer by using the Monitor’s READ command. The data values
you've stored on the tape need not be read back into the same
memory range from whence they came; you can tell the Monitor to
put those values into any memory range in the computer’s memory,
provided that it’s the same size as the range you saved.

The format of the READ command is the same as that of the WRITE
command, except that the command letter is R:

{start} . {end} R

Once again, after typing the command, don’t press Return.
Instead, start the tape recorder in play mode and wait a few
seconds. Although the WRITE command puts a ten-second leader
tone on the beginning of the tape, the READ command needs only
three seconds of this leader to lock on to the signal from the tape.
You should let a few seconds of tape go by before you press Return
to allow the tape recorder’s output to settle down to a steady tone.

This example has two parts. First, you set a range of memory to
zero, verify the contents of memory, and then type the READ
command (but don’t press Return).

*0:00000000000000000O0CO0O0CO
*0.14

0000- 00 00 00 00 00 00 00 0O
0008- 00 00 00 00 00 00 00 00
0010- 00 00 00 00 00

0.14R

Now start the cassette running in play mode, wait a few seconds, and
press Return. After the Monitor sounds the bell (beep) and displays
the prompt, examine the range of memory to see that the values
from the tape were read correctly.

*0.14

0000- FF FF AD 30 CO 88 DO 04
0008~ C6 01 FO 08 CA DO F6 A6
0010- 00 4C 02 00 60

*

Monitor cassette tape commands 113

114

After the Monitor has read all the data values on the tape, it reads
the checksum value. It computes the checksum on the data it read
and compares it to the checksum from the tape. If the two
checksums differ, the Monitor sends a beep to the speaker and
displays ERR. This warns you that there was a problem reading the
tape and that the values stored in memory aren’t the values that were
recorded on the tape. If the two checksums match, the Monitor will
just send out a beep and display a prompt.

Miscellaneous Monitor commands

These Monitor commands enable you to change the video display
format from normal to inverse and back, and to assign input and
output to accessories in expansion slots.

Inverse and normail display

You can control the setting of the inverse-normal mask location
used by the COUT subroutine (described in Chapter 3) from the
Monitor so that all of the Monitor’s output will be in inverse format.
The INVERSE command, I, sets the mask such that all subsequent
inputs and outputs are displayed in inverse format. To switch the
Monitor’s output back to normal format, use the NORMAL
command, N.

*0.F

0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

*
*0.F

0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

*N
*0.F

0000- OA OB OC OD OE OF DO 04
0008~ C6 01 FO 08 CA DO F6 A6

Chapter 5: Using the Monitor

Warning

Back to BASIC

Use the BASIC command, Control-B, to leave the Monitor and
enter the BASIC that was active when you entered the Monitor.
Normally, this is Applesoft BASIC, unless you deliberately switched
to Integer BASIC. Any program or variables that you had previously
in BASIC will be lost. If you want to reenter BASIC with your
previous program and variables intact, use the CONTINUE BASIC
command, Control-C.

If you are using DOS 3.3 or ProDOS, press Control-Reset or type
3D0G to return to the language you were using, with your program
and variables intact.

% That’s a number, not a letter: If you use 3DOG, make sure that
the third character you type is a zero, not a letter O. The letter G
is the Monitor’s GO command, described in the section
“Machine-Language Programs” later in this chapter.

Redirecting input and output

The PRINTER command, activated by Control-P, diverts all output
normally destined for the screen to an interface card in a specified
expansion slot, from 1 to 7. There must be an interface card in the
specified slot, or you will lose control of the computer and your

program and variables may be lost. The format of the command is

{slot numben Control-P

A PRINTER command to slot number 0 will switch the stream of
output characters back to the Apple Ile’s video display.

Don’t give the PRINTER command with slot number 0 to
deactivate the 80-column firmware, even though you used this
command to activate it in slot 3. The command works, but it
Just disconnects the firmware, leaving some of the soft switches
set for 80-column display.

In much the same way that the PRINTER command switches the
output stream, the KEYBOARD command substitutes the interface
card in a specified expansion slot for the Apple Ile’s normal input
device, the keyboard. The format for the KEYBOARD command is

{slot numbent Control-K

A slot number of 0 for the KEYBOARD command directs the
Monitor to accept input from the Apple Ile’s built-in keyboard.

The PRINTER and KEYBOARD commands are the exact equivalents
of the BASIC commands PR# and IN#,
Miscellaneous Monitor commands 116

Hexadecimal arithmetic

The Monitor will also perform one-byte hexadecimal addition and
subtraction. Just type a line in one of these formats:

{valud + {value {value} — {value}

The Apple Ile performs the arithmetic and displays the result, as
shown in these examples:

*20+13
=33
*4A-C
=3E
*FF+4 =
03

*3-4

=FF
*

Special tricks with the Monitor

This section describes some more complex ways of using the
Monitor commands.

Multiple commands

You can put as many Monitor commands on a single line as you
like, as long as you separate them with spaces and the total number
of characters in the line is less than 254. Adjacent single-letter
commands such as L, S, I, and N need not be separated by spaces.

You can freely intermix all the commands except the STORE (:)
command. Since the Monitor takes all values following a colon and
places them in consecutive memory locations, the last value in a
STORE must be followed by a letter command before another
address is encountered. You can use the NORMAL command as the
required letter command in such cases; it usually has no effect and
can be used anywhere.

116 Chapter 5: Using the Monitor

In the following example, you display a range of memory, change
it, and display it again, all with one line of commands:

*300.307 300:18 69 1 N 300.302

0300- 00 00 00 00 00 00 00 00
0300- 18 69 01

*

If the Monitor encounters a character in the input line that it does
not recognize as either a hexadecimal digit or a valid command
character, it executes all the commands on the input line up to that
character, then grinds to a halt with a noisy beep and ignores the
remainder of the input line.

Filling memory

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern in
the first locations in the range.

*300:11 22 33

Remember the number of values in the pattern: in this case, it is
three. Use the number to compute addresses for the MOVE
command, like this:

{start+number} < {start} . {end—-numbert M

This MOVE command will first replicate the pattern at the locations
immediately following the original pattern, then replicate that
pattern following itself, and so on until it fills the entire range.

*303<300.32DM
*300.32F

0300- 11 22 33 11 22 33 11 22
0308- 33 11 22 33 11 22 33 11
0310- 22 33 11 22 33 11 22 33
0318- 11 22 33 11 22 33 11 22
0320- 33 11 22 33 11 22 33 11
0328- 22 33 11 22 33 11 22 33

*

Special tricks with the Monitor 117

118

You can do a similar trick with the VERIFY command to check
whether a pattern repeats itself through memory. This is especially
useful to verify that a given range of memory locations all contain
the same value. In this example, you first fill the memory range
from $0300 to $0320 with zeros and verify it, then change one
location and verify again, to see the VERIFY command detect the
discrepancy:

*300:0

*301<300.3IFM

*301<300.31FV

*304:02

*301<300.31FV

0303-00 (02) 0304-02 (00)

*

Repeating commands

You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of the
command line that you want to repeat with a letter command, such
as N, and ending it with the sequence 34:n, where n is a
hexadecimal number that specifies the position in the line of the
command where you want to start repeating; for the first character
in the line, n=0. The value for n must be followed with a space in
order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an index
register to step through the input buffer, starting at location $0200.
Each time the Monitor executes a command, it stores the value of
the index at location $34; when that command is finished, the
Monitor reloads the index register with the value at location $34. By
making the last command change the value at location $34, you
change this index so that the Monitor picks up the next command
character from an earlier point in the buffer.

Chapter 5: Using the Monitor

The only way to stop a loop like this is to press Control-Reset; that is
how this example ends.

*N 300 302 34:0

0300- 11
0302- 33
0300~ 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33

030
*

Creating your own commands

The USER command, Control-Y, forces the Monitor to jump to
memory location $03F8. You can put a JMP instruction there that
jumps to your own machine-language program. Your program can
then examine the Monitor’s registers and pointers or the input
buffer itself to obtain its data. For example, here is a program that
displays everything on the input line after the Control-Y. The
program starts at location $0300; the command line that starts with
$03F8 stores a jump to $0300 at location $03F8.

*300:A4 34 B9 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF

*378:4C 00 03
*Control-Y THIS IS A TEST

THIS IS A TEST

*

Special tricks with the Monitor 119

120

Machine-language programs

The main reason to program in machine language is to get more
speed. A program in machine language can run much faster than
the same program written in high-level languages such as BASIC or
Pascal, but the machine-language version usually takes a lot longer
to write. There are other reasons to use machine language: you
might want your program to do something that isn’t included in
your high-level language, or you might just enjoy the challenge of
using machine language to work directly on the bits and bytes.

< Boning up on machine language: If you have never used
machine language before, you'll need to learn the 65C02
instructions listed in Appendix A. To become proficient at
programming in machine language, you'll have to spend some
time at it and study at least one of the books on 6502
programming listed in the bibliography. With the books and
Appendix A, you'll have the needed information to program
the 65C02.

You can get a hexadecimal dump of your program, move it around
in memory, or save it on tape and recall it using the commands
described in the previous sections. The Monitor commands in this
section are intended specifically for you to use in creating, writing,
and debugging machine-language programs.

Running a program

The Monitor command you use to start execution of your machine-
language program is the GO command. When you type an address
and the letter G, the Apple Ile starts executing machine language
instructions starting at the specified location. If you just type G,
execution starts at the last opened location. The Monitor treats this
program as a subroutine: it should end with an RTS (return from
subroutine) instruction to transfer control back to the Monitor.

Chapter 5: Using the Monitor

The word mnemonic comes from
the same root as memory and
refers 1o short acronyms that
are easier to remember than the
hexadecimal operation codes
themselves: for example, for
clear carry you write CLC
instead of $18.

The Monitor has some special features that make it easier for you to
write and debug machine-language programs, but before you get
into that, here is a small machine-language program that you can
run using only the simple Monitor commands already described.
The program in the example merely displays the letters A

through Z: you store it starting at location $0300, examine it to be
sure you typed it correctly, then type 300G to start it running.

*300:A9 C1 20 ED FD 18 69 1 C9 DB DO F6 60
*300.30C

0300- A9 C1 20 ED FD 18 69 01
0308- C9 DB DO F6 60

*300G ABCDEFGHIJKLMNOPQRSTUVWXYZ

*

Disassembled programs

Machine-language code in hexadecimal isn't the easiest thing in the
world to read and understand. To make this job a little easier,
machine-language programs are usually written in assembly
language and converted into machine-language code by programs
called assemblers.

Since programs that translate assembly language into machine
language are called assemblers, a program like the Monitor’s LIST
command that translates machine language into assembly language
is called a disassembler.

The Monitor’s LIST command displays machine-language code in
assembly-language form. Instead of unformatted hexadecimal
gibberish, the LIST command displays each instruction on a
separate line, with a three-letter instruction name, or mnemonic,
and a formatted hexadecimal operand. The LIST command also
converts the relative addresses used in branch instructions to
absolute addresses.

Machine-language programs 121

122

The Monitor LIST command has the format
{location} L

The LIST command starts at the specified location and displays as
much memory as it takes to make up a screenful (20 lines) of
instructions, as shown in the following example:

*300L

0300~ A9 C1 LDA #sC1
0302- 20 ED FD JSR SFDED
0306- 18 CLC

0306- 69 01 ADC #3501
0308- C9 DB CMP #SDB
030A- DO Fé6 BNE $0302
030C- 60 RTS

030D- 00 BRK

030E- 00 BRK

030F- 00 BRK

0310- 00 BRK

0311- 00 BRK

0312- 00 BRK

0313- 00 BRK

0314- 00 BRK

0316- 00 BRK

0316- 00 BRK

0317~ 00 BRK

0318- 00 BRK

0319- 00 BRK

*

The first seven lines of this example are the assembly-language form
of the program you typed in the previous example. The rest of the
lines are BRK instructions only if this part of memory has zeros in it:
other values will be disassembled as other instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the program
counter, which it uses only to point to locations within programs.
Whenever the Monitor performs a LIST command, it sets the
program counter to point to the location immediately following the
last location displayed on the screen, so that if you type another
LIST command it will display another screenful of instructions,
starting where the previous display left off.

Chapter 5: Using the Monitor

Original lle

The Mini-Assembler

Without an assembler, you have to write your machine-language
program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered
in the previous sections. That is exactly what you did when you ran
the previous examples.

The Monitor includes an assembler called the Mini-Assembler that
lets you enter machine-language programs directly from the
keyboard of your Apple. ASCII characters can be entered in Mini-
Assembler programs, exactly as you enter them in the Monitor.
Note that the Mini-Assembler doesn’t accept labels; you must use
actual values and addresses.

Starting the Mini-Assembler

To start the Mini-Assembler first invoke the Monitor by typing
CALL -151 and pressing Return, and then from the Monitor, type
! followed by Return. The Monitor prompt character then changes
from * to !.

When you finish using the Mini-Assembler, press Return from a
blank line to return to the Monitor.

Restrictions

The Mini-Assembler supports only the subset of 65C02 instructions
that are found on the 6502.

Before you can use the Mini-Assembler on the original Apple lle,
you have to be running Integer BASIC. When you start up the
computer using DOS or either BASIC, the Apple lle loads the
Integer BASIC interpreter from the file named INTBASIC into the
bank-switched RAM. Here’s how to start the Mini-Assembler on
an original Apple lle:

1. Start Integer BASIC from DOS 3.3 by typing INT and pressing
Return.

2. After the Integer prompt character (>) and a cursor appear,
enter the Monitor by typing CALL -151 and pressing Return.

3. Now start the Mini-Assembler by typing F666G and pressing
Return.

The Mini-Assembler 123

Using the Mini-Assembler

The Mini-Assembler saves one address, that of the program
counter. Before you start to type a program, you must set the
program counter to point to the location where you want the Mini-
Assembler to store your program. Do this by typing the address
followed by a colon.

After the colon, type the mnemonic for the first instruction in your
program, followed by a space and the operand of the instruction.
Now press Return. The Mini-Assembler converts the line you typed
into hexadecimal, stores it in memory beginning at the location of
the program counter, and then disassembles it again and displays
the disassembled line. It then displays a prompt on the next line.

Now the Mini-Assembler is ready to accept the second instruction
in your program. To tell it that you want the next instruction to
follow the first, don’t type an address or a colon: just type a space
and the next instruction’s mnemonic and operand, then press

Formats for operands are listed Return. The Mini-Assembler assembles that line and waits for
in Table 5-1. another.
1300:LDX #02
0300- A2 02 LDX #502
! LDA $0,X
0302- BS 00 LDA $00, X
! STA $10,X
0304 95 10 STA $10,X
! DEX
0306- CA DEX
! STA $C030

0307~ 8D 30 CO STA $C030

! BPL $302

030A- 10 F6 BPL $0302
! BRK

030C- 00 BRK

124 Chapter 5: Using the Monitor

Original lle

If the line you type has an error in it, the Mini-Assembler beeps
loudly and displays a caret (*) under or near the offending

character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing

parentheses, and so forth. The Mini-Assembler also rejects the
input line if you forget the space before or after a mnemonic or

include an extraneous character in a hexadecimal value or address.
If the destination address of a branch instruction is out of the range
of the branch (more than 127 locations distant from the address of

the instruction), the Mini-Assembler flags this as an error.

There are several different ways to leave the Mini-Assembler and
reenter the Monitor. On an enhanced Apple Ile only, simply press

Return at a blank line.

On an original Apple lie, type the Monitor command $FF69G.

On any Apple Ile, you can press Control-Reset, which forces a

warm restart of BASIC, then type CALL -151.

Your assembly-language program is now stored in memory. You
can display it with the LIST command:

*3001

0300-
0302-
0304-
0306-
0307-
030A-
030C-
030D-
030E-
030F-
0310-
0311-
0312-
0313-
0314-
0316~
0316-
0317-
0318-

0319-
*

A2
BS
95
CA
8D
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
00
10

30 CcO
Fé

LDX
LDA
STA
DEX
STA
BPL
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK

#3502
$00,X
$10,X

$C030
$0302

The Mini-Assembler

125

See Appendix A for more
Information about 65C02 (and

6502) instructions.

Table 5-1

Mini-Assembler address formats

Addressing mode Format

Accumulator
Implied
Immediate
Absolute
Zero page

Indexed zero
page
Indexed
absolute

Relative
Indexed
indirect

Indirect
indexed

Absolute
indirect

*

*

#${value
${address}
${address}

${address}, X
${address},Y

${address}, X
${address},Y

${address}
(${address},X)
($laddressp),Y

(${address)

* These instructions have no

operands.

Mini-Assembler instruction formats

The Apple Mini-Assembler recognizes 56 mnemonics and 13
addressing formats. These constitute the 6502 subset of the 65C02
instruction set. The mnemonics are standard, as used in the
Synertek Programming Manual (Apple part number A2L0003),
but the addressing formats are somewhat different. Table 5-1 shows
the Apple standard address-mode formats for 6502 assembly
language.

An address consists of one or more hexadecimal digits. The Mini-
Assembler interprets addresses the same way the Monitor does: if
an address has fewer than four digits, the Mini-Assembler adds
leading zeros; if the address has more than four digits, then it uses
only the last four.

< Dollar signs: In this manual, dollar signs (§) in addresses signify
that the addresses are in hexadecimal notation. They are
ignored by the Mini-Assembler and may be omitted when

typing programs.

There is no syntactical distinction between the absolute and zero-
page addressing modes. If you give an instruction to the Mini-
Assembler that can be used in both absolute and zero-page mode,
the Mini-Assembler assembles that instruction in absolute mode if
the operand for that instruction is greater than $FF, and it
assembles it in zero-page mode if the operand is less than $0100.

Instructions in accumulator mode and implied addressing mode
need no operands.

Branch instructions, which use the relative addressing mode,
require the target address of the branch. The Mini-Assembler
calculates the relative distance to use in the instruction
automatically. If the target address is more than 127 locations
distant from the instruction, the Mini-Assembler sounds a bell
(beep), displays a caret (*) under the target address, and does not
assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction
and an operand, and the addressing mode of the operand cannot
be used with the instruction you entered, the Mini-Assembler will
not accept the line.

126 Chapter 5: Using the Monitor

Summary of Monitor commands

Here is a summary of the Monitor commands, showing the syntax
for each one.

Examining memory

{adrs} Examines the value contained in one
location.
{adrs1}{adrs2} Displays the values contained in all

locations between {adrs1} and {adrs2}.

Return Displays the values in up to eight locations
following the last opened location.

Changing the contents of memory

{adrst:{val} {val} Stores the values in consecutive memory
locations starting at {adrs}.

{vallval}... Stores values in memory starting at the next
changeable location.

Moving and comparing

{desti<{start}.{end}M Copies the values in the range
{stard.{end} into the range beginning at
{dest.

{desti<{start}.{end}V Compares the values in the range
{starfl {end} to those in the range
beginning at {des#.

The Examine command

Control-E Displays the locations where the contents
of the 65C02’s registers are stored and
opens them for changing.

Summary of Monitor commands 127

The Search command

{vab<{stard{end)S Displays the address of the first
occurrence of {va} in the specified range
beginning at {star#.

Cassette tape commands

{starft {endtW Writes the values in the memory range
{star {end} onto tape, preceded by a
ten-second leader.

{start).{end}R Reads values from tape, storing them
in memory beginning at {star$ and
stopping at {end. Prints ERR if an error
occurs.

Miscellaneous Monitor commands

I Sets inverse display mode.

N Sets normal display mode.

Control-B Enters the language currently active
(usually Applesoft).

Control-C Returns to the language currently active
(usually Applesoft).

{val+{val) Adds the two values and prints the

hexadecimal result.

{vah—-{val Subtracts the second value from the first
and prints the result.

{slof} Control-P Diverts<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>